Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells that inhibit anti-tumor immunity and contribute to immune therapy resistance. MDSC populations were measured in melanoma patients receiving immune checkpoint inhibitors (ICI).Patients with melanoma (n=128) provided blood samples at baseline (BL), and before cycles 2 and 3 (BC2, BC3). Peripheral blood mononuclear cells (PBMC) were analyzed for MDSC (CD33+/CD11b+/HLA- DRlo/-) and MDSC subsets, monocytic (CD14+, M-MDSC), granulocytic (CD15+, PMN-MDSC), and early (CD14-/CD15-, E-MDSC) via flow cytometry. Statistical analysis employed unpaired and paired t-tests across and within patient cohorts.Levels of MDSC as a percentage of PBMC increased during ICI (BL: 9.2 ± 1.0% to BC3: 23.6 ± 1.9%, p<0.0001), and patients who developed progressive disease (PD) had higher baseline MDSC. In patients who had a complete or partial response (CR, PR), total MDSC levels rose dramatically and plateaued (BL: 6.4 ± 1.4%, BC2: 26.2 ± 4.2%, BC3: 27.5 ± 4.4%; p<0.0001), whereas MDSC rose less sharply in PD patients (BL: 11.7 ± 2.1%, BC2: 18.3 ± 3.1%, BC3: 19.0 ± 3.2%; p=0.1952). Subset analysis showed that within the expanding MDSC population, PMN-MDSC and E-MDSC levels decreased, while the proportion of M-MDSC remained constant during ICI. In PD patients, the proportion of PMN-MDSC (as a percentage of total MDSC) decreased (BL: 25.1 ± 4.7%, BC2: 16.1 ± 5.2%, BC3: 8.6 ± 1.8%; p=0.0105), whereas a heretofore under-characterized CD14+/CD15+ double positive MDSC subpopulation increased significantly (BL: 8.7 ± 1.4% to BC3: 26.9 ± 4.9%; p=0.0425).MDSC levels initially increased significantly in responders. PMN-MDSC decreased and CD14+CD15+ MDSC increased significantly in PD patients. Changes in MDSC levels may have prognostic value in ICI.
<p>Supplemental Figure S1. Contribution of NK and T cells to IFN-gamma production. Supplemental Figure S2. MICA expression on monocytes. Supplemental Figure S3. NKG2D Ligand Expression on C1R and C1R-MICA Cell Lines. Supplemental Figure S4. Monocyte MICA expression does not correlate with NK cell IFN-gamma production. Supplemental Figure S5. NKG2D and MICA expression levels prior to and following co-culture.</p>
Traditionally, the CD56dimCD16+ subset of Natural Killer (NK) cells has been thought to mediate cellular cytotoxicity with modest cytokine secretion capacity. However, studies have suggested that this subset may exert a more diverse array of immunological functions. There exists a lack of well-developed functional models to describe the behavior of activated NK cells, and the interactions between signaling pathways that facilitate effector functions are not well understood. In the present study, a combination of genome-wide microarray analyses and systems-level bioinformatics approaches were utilized to elucidate the transcriptional landscape of NK cells activated via interactions with antibody-coated targets in the presence of interleukin-12 (IL-12). We conducted differential gene expression analysis of CD56dimCD16+ NK cells following FcR stimulation in the presence or absence of IL-12. Next, we functionally characterized gene sets according to patterns of gene expression and validated representative genes using RT-PCR. IPA was utilized for biological pathway analysis, and an enriched network of interacting genes was generated using GeneMANIA. Furthermore, PAJEK and the HITS algorithm were employed to identify important genes in the network according to betweeness centrality, hub, and authority node metrics. Analyses revealed that CD56dimCD16+ NK cells co-stimulated via the Fc receptor (FcR) and IL-12R led to the expression of a unique set of genes, including genes encoding cytotoxicity receptors, apoptotic proteins, intracellular signaling molecules, and cytokines that may mediate enhanced cytotoxicity and interactions with other immune cells within inflammatory tissues. Network analyses identified a novel set of connected key players, BATF, IRF4, TBX21, and IFNG, within an integrated network composed of differentially expressed genes in NK cells stimulated by various conditions (immobilized IgG, IL-12, or the combination of IgG and IL-12). These results are the first to address the global mechanisms by which NK cells mediate their biological functions when encountering antibody-coated targets within inflammatory sites. Moreover, this study has identified a set of high-priority targets for subsequent investigation into strategies to combat cancer by enhancing the anti-tumor activity of CD56dimCD16+ NK cells.
Nanodiamonds containing color-centers produce non-quenching fluorescence that is easily detected. This makes them useful for cellular, proteomic and genomic applications. However, fluorescent nanodiamonds have yet to become popular in the biomedical research community as labeling reagents. We discuss production of nanodiamonds with distinct color-centers and assess their biocompatibility and techniques for bioconjugation. Fluorescent diamonds were fabricated by electron irradiation of high-pressure, high-temperature micron-sized diamonds which generated diamonds with vacancy-related defects (V). These diamonds were annealed to create nitrogen vacancy (NV)-centers then following a milling step were fractionated into nanoparticle sizes of 30, 60, and 95 nm. Optical characterization of Vand NV-center diamonds demonstrated fluorescence in two distinct green and red channels, respectively. In vitro studies demonstrated that these nanodiamonds are biocompatible and readily taken up by murine macrophage cells. Quantification of NV-center nanodiamond uptake by flow cytometry, showed that uptake was independent of nanodiamond size. Confocal microscopy demonstrated that NV-center nanodiamonds accumulate within the cytoplasm of these cells. NV-center nanodiamonds were then conjugated with streptavidin using a short polyethylene chain as linker. Conjugation was confirmed via a catalytic assay employing biotinylated-horseradish peroxidase. We present a technique for large-scale production of biocompatible conjugated V- or NV-center nanodiamonds. Functional testing is essential for standardization of fluorescent nanodiamond bioconjugates and quality control. Large-scale production of bioconjugated fluorescent nanodiamonds is crucial to their development as novel tools for biological and medical applications.
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular processes in cancer and immunity, including innate immune cell development and effector function. However, the transcriptional repertoire through which AHR mediates these effects remains largely unexplored. To elucidate the transcriptional elements directly regulated by AHR in natural killer (NK) cells, we performed RNA and chromatin immunoprecipitation sequencing on NK cells exposed to AHR agonist or antagonist. We show that mature peripheral blood NK cells lack AHR, but its expression is induced by Stat3 during interleukin-21-driven activation and proliferation, coincident with increased NCAM1 (CD56) expression resulting in a CD56bright phenotype. Compared with control conditions, NK cells expanded in the presence of the AHR antagonist, StemRegenin-1, were unaffected in proliferation or cytotoxicity, had no increase in NCAM1 transcription, and maintained the CD56dim phenotype. However, it showed altered expression of 1004 genes including those strongly associated with signaling pathways. In contrast, NK cells expanded in the presence of the AHR agonist, kynurenine, showed decreased cytotoxicity and altered expression of 97 genes including those strongly associated with oxidative stress and cellular metabolism. By overlaying these differentially expressed genes with AHR chromatin binding, we identified 160 genes directly regulated by AHR, including hallmark AHR targets AHRR and CYP1B1 and known regulators of phenotype, development, metabolism, and function such as NCAM1, KIT, NQO1, and TXN. In summary, we define the AHR transcriptome in NK cells, propose a model of AHR and Stat3 coregulation, and identify potential pathways that may be targeted to overcome AHR-mediated immune suppression.
Abstract Myeloid derived suppressor cells (MDSC) interfere with anti tumor immune responses. MDSC have also been shown to antagonize the effectiveness of immune based therapies including immune checkpoint blockade. As a result, MDSC have received attention as potential targets for immune based combination therapies. There has been limited success in the identification of clinically active agents with the ability to inhibit the function or generation of MDSC. Ibrutinib is an orally available irreversible inhibitor of Bruton's tyrosine kinase (BTK) that is FDA approved for the treatment of B cell malignancies. In addition to B cells, cells of the myeloid lineage including monocytes and macrophages express BTK, and treatment with ibrutinib has been shown to alter their function and differentiation. As a result, it was hypothesized that ibrutinib would interfere with the function or generation of MDSC in the setting of cancer. MDSC isolated from the spleens of multiple murine tumor models (EMT6, 4T1, and C26) as well as MDSC from patients with metastatic melanoma expressed BTK. Treatment with ibrutinib at doses ranging from 0.1-5 μM inhibited the phosphorylation of BTK in both murine and human MDSC. Ibrutinib treatment of murine and human MDSC resulted in a significant reduction in nitric oxide (NO) production (p< 0.05), but had only modest effects on MDSC levels of IDO and arginase. Ibrutinib was also able to inhibit murine MDSC migration in response to EMT6 cell line conditioned media and the chemokine CXCL12 (p< 0.05). In addition, ibrutinib inhibited human MDSC migration in response to GM CSF (p< 0.05). Ibrutinib reduced the expression of the myeloid adhesion molecules CD11a (p< 0.05) and CD49D (p< 0.01) by MDSC, which could explain the reduction in migration. Importantly, ibrutinib significantly reduced the ability of MDSC to suppress CD8+ T cell proliferation compared to DMSO (21.98% vs. 12.49% proliferation, p< 0.05). Daily treatment with ibrutinib effectively inhibited the in vitro generation of human MDSC from monocytes by promoting HLA DR expression (p< 0.05). Using the EMT6 mammary carcinoma model in vivo, ibrutinib treatment resulted in a significant reduction of MDSC in both the spleen and tumor (p< 0.05). Ibrutinib also reduced the frequency of splenic MDSC in wild type B16F10 tumor bearing mice, but not in BTK mutant XID mice. In addition, both murine and human MDSC did not express significant levels of alternative ibrutinib targets including ITK, Bmx, and Blk. These results suggest that inhibition of BTK is the primary driver behind the observed effects of ibrutinib on MDSC function and generation. Finally, the combination of ibrutinib and anti PDL1 therapy was significantly more effective than either agent alone (p< 0.01 and p< 0.05) producing complete tumor regression in 50% of EMT6 tumor being mice. The results support further investigation of ibrutinib in combination with immune based therapies for solid tumors. Citation Format: Andrew R. Stiff, Prashant Trikha, Robert Wesolowski, Kari Kendra, Sarvani Uppati, David Abood, Elizabeth McMichael, Megan Duggan, Amanda Campbell, Natarajan Muthusamy, Susheela Tridandapani, Michael Caliguiri, John C. Byrd, William E. Carson. Ibrutinib, a BTK inhibitor, impairs the generation and function of myeloid derived suppressor cells. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 553.
<p>Supplemental Figure S1. Contribution of NK and T cells to IFN-gamma production. Supplemental Figure S2. MICA expression on monocytes. Supplemental Figure S3. NKG2D Ligand Expression on C1R and C1R-MICA Cell Lines. Supplemental Figure S4. Monocyte MICA expression does not correlate with NK cell IFN-gamma production. Supplemental Figure S5. NKG2D and MICA expression levels prior to and following co-culture.</p>