Computer Assisted Orthopaedic Surgery (CAOS) technology is constantly evolving with support from a growing number of clinical trials. In contrast, reports of technical accuracy are scarce, with there being no recognized guidelines for independent measurement of the basic static performance of computer assisted systems. To address this problem, a group of surgeons, academics and manufacturers involved in the field of CAOS collaborated with the American Society for Testing and Materials (ASTM) International and drafted a set of standards for measuring and reporting the technical performance of such systems. The aims of this study were to use these proposed guidelines in assessing the positional accuracy of both a commercially available and a novel tracking system.A standardized measurement object model based on the ASTM guidelines was designed and manufactured to provide an array of points in space. Both the Polaris camera with associated active infrared trackers and a novel system that used a small visible-light camera (MicronTracker) were evaluated by measuring distances and single point repeatability. For single point registration the measurements were obtained both manually and with the pointer rigidly clamped to eliminate human movement artifact.The novel system produced unacceptably large distance errors and was not evaluated beyond this stage. The commercial system was precise and its accuracy was well within the expected range. However, when the pointer was held manually, particularly by a novice user, the results were significantly less precise by a factor of almost ten.The ASTM guidelines offer a simple, standardized method for measuring positional accuracy and could be used to enable independent testing of tracking systems. The novel system demonstrated a high level of inaccuracy that made it inappropriate for clinical testing. The commercially available tracking system performed well within expected limits under optimal conditions, but revealed a surprising loss of accuracy when movement artifacts were introduced. Technical validation of systems may give the user community more confidence in CAOS systems as well as highlighting potential sources of point registration error.
Flexion contracture is a common deformity encountered in patients requiring total knee replacements (TKR). Both the soft tissue envelope and articular bones are involved in the knee extension lag. A few studies in the past have assessed the relationship between bone cuts and extension deficit by using goniometers and rulers. Using navigation for TKR enables the accurate measurement of knee flexion contracture and bone cuts. The aim of this study was to try to establish a relationship between extension lag correction and the size of bone cuts made. 104 continuous TKR were completed by a single consultant using the OrthoPilot ® (BBraun, Aesculap) navigation system and Columbus implants. 74 knees had preoperative flexion contracture (including neutral knees) while 30 were in hyperextension. Data was recorded prospectively using the navigation system. These included preoperative flexion and extension angles, actual bone cuts of tibia and femur (both medial and lateral), postoperative correction of flexion and extension angle, size of the prosthesis with thickness of polyethylene and soft tissue release. Of the 74 knees with fixed flexion, 57 had no release and 13 had a posterior release (4 had an intermediate release and were excluded from the study). For knees with fixed flexion (n=70) there was a significant statistical difference between the pre and post implant extension angle (p Flexion contracture deformity in TKR can theoretically be solved in two ways: either by extensively releasing the soft tissue or by increasing the extension gap by cutting more bone (logically the distal femur). Appropriate soft tissue management and release in TKR is crucial in balancing the prosthesis in the coronal as well as the lateral plane. This study seems to confirm the supremacy of soft tissue management and release over bone cut resection. Cutting more or less bone could in fact lead to a poorer outcome as this will change the joint line level without having any additional beneficial effect in correcting the flexion contracture. Conversely adequate soft tissue release has corrected the flexion contracture when needed. In conclusion, there was no correlation between bone cut resection and extension lag correction and with large extension deficits, a posterior soft tissue release and osteophytes resection was more important than bone cuts.
The recognition of the correct pattern and severity of deformity in knee osteoarthritis has important implications in its surgical management. Our unit routinely uses standing long leg films and computer navigation. However, these modalities are not widely available and most surgeons rely on clinical assessment and short films. Our experience is that clinical assessment can give the opposite impression of the true deformity pattern particularly among obese patients and there is evidence that short knee films are not reliable. Our study aims to compare clinical, radiographic and computer measurements of knee deformity, assess the influence of Body Mass Index and asses the relationship between coronal and flexion deformity.
We measured 52 consecutive knees prior to arthroplasty using clinical, long leg radiographs and computer navigation methods. Systematic clinical measurement was done with patient standing. Standing radiographs stored in a Picture Archiving System were measured by two independent observers. The senior surgeon performed computer measurement while applying axial load to the foot to simulate weight bearing.
Using long leg films as baseline, clinical and X-ray measurement had a mean error of 0.8° (−12 to +12). Seven clinically valgus knees turned out varus on X-ray. Mean BMI for this group was the same as the rest. Using navigation as baseline, clinical and navigation coronal measurements had a mean error of 0.3° (+9 to −10.5). Four clinically valgus knees turned out varus with navigation. Mean BMI for this group was the same as the rest. Flexion deformity was similar between clinical and computer measurement. Three clinically normal knees showed significant varus in both X-ray and navigation. Compared directly, radiographic and navigation coronal deformity showed significant difference in the degree of deformity but not in the pattern of deformity. There was no correlation between BMI and both the error in clinical assessment of coronal deformity and navigation coronal alignment. If flexion deformity was >5°, higher BMI indicates higher flexion deformity. There was a weak correlation between navigation coronal and flexion deformity.
Although error in clinical measurement did not reach statistical significance, based on our result, clinical assessment can give an incorrect pattern of deformity in up to 13% and hence should not be the sole basis of assessing deformity. Contrary to expectation, BMI did not influence error of clinical assessment or severity of coronal deformity. It however appeared to influence larger flexion deformities. The discrepancy between radiographic and navigation measurements reflects the absence of true weight bearing with navigation even though we tried to simulate this by applying axial load to the foot.
Clinical laxity tests are frequently used for assessing knee ligament injuries and for soft tissue balancing in total knee arthroplasty (TKA). Current routine methods are highly subjective with respect to examination technique, magnitude of clinician-applied load and assessment of joint displacement. Alignment measurements generated by computer-assisted technology have led to the development of quantitative TKA soft tissue balancing algorithms. However to make the algorithms applicable in practice requires the standardisation of several parameters: knee flexion angle should be maintained to minimise the potential positional variation in ligament restraining properties; hand positioning of the examining clinician should correspond to a measured lever arm, defined as the perpendicular distance of the applied force from the rotational knee centre; accurate measurement of force applied is required to calculate the moment applied to the knee joint; resultant displacement of the knee should be quantified. The primary aim of this study was to determine whether different clinicians could reliably assess coronal knee laxity with a standardised protocol that controlled these variables. Furthermore, a secondary question was to examine if the experience of the clinician makes a difference. We hypothesised that standardisation would result in a narrow range of laxity measurements obtained by different clinicians. Six consultant orthopaedic surgeons, six orthopaedic trainees and six physiotherapists were instructed to assess the coronal laxity of the right knee of a healthy volunteer. Points were marked over the femoral epicondyles and the malleoli to indicate hand positioning and give a constant moment arm. The non-invasive adaptation of a commercially available image-free navigation system enabled real-time measurement of coronal and sagittal mechanical femorotibial (MFT) angles. This has been previously validated to an accuracy of ±1°. Collateral knee laxity was defined as the amount of angular displacement during a stress manoeuvre. Participants were instructed to maintain the knee joint in 2° of flexion whilst performing a varus-valgus stress test using what they perceived as an acceptable load. They were blinded to the coronal MFT angle measurements. A hand-held force application device (FAD) was then employed to allow the clinicians to apply a moment of 18Nm. This level was based on previous work to determine a suitable subject tolerance limit. They were instructed to repeat the test using the device in the palm of their right hand and to apply the force until the visual display and an auditory alarm indicated that the target had been reached. The FAD was then removed and participants were asked to repeat the clinical varus-valgus stress test, but to try and apply the same amount of force as they had been doing with the device. Maximum MFT angular deviation was automatically recorded for each stress test and the maximum moment applied was recorded for each of the tests using the FAD. Means and standard deviations (SD) were used to compare different clinicians under the same conditions. Paired t-tests were used to measure the change in practice of groups of clinicians before, during and after use of the FAD for both varus and valgus stress tests. All three groups of clinicians initially produced measurements of valgus laxity with consistent mean values (1.5° for physiotherapists, 1.8° for consultants and 1.6° for trainees) and standard deviations ( We have successfully standardised the manual technique of coronal knee laxity assessment by controlling the subjective variables. The results support the hypothesis of producing a narrow range of laxity measurements but with valgus laxity appearing more consistent than varus. The incorporation of a FAD into assessment of coronal knee laxity did not affect the clinicians9 ability to produce reliable and repeatable measurements, despite removing the manual perception of laxity. The FAD also provided additional information about the actual moment applied. This information may have a role in improving the balancing techniques of TKA and the management of collateral ligament injuries with regard initial diagnosis and grading as well as rehabilitation. Finally, the results suggest that following use of the FAD, more experienced clinicians returned to applying their usual manual force, while trainees appeared to use this augmented feedback to adapt their technique. Therefore this technique could be a way to harness the experience of senior clinicians and use it to enhance the perceptive skills of more junior trainees who do not have the benefit of this knowledge.
Conventional computer navigation systems using bone fixation have been validated in measuring anteroposterior (AP) translation of the tibia. Recent developments in non-invasive skin-mounted systems may allow quantification of AP laxity in the out-patient setting. We tested cadaveric lower limbs (n=12) with a commercial image free navigation system using passive trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° knee flexion and 100N of force applied perpendicular to the tibial tuberosity using a secured dynamometer. Repeatability coefficient was calculated both to reflect precision within each system, and demonstrate agreement between the two systems at each flexion interval. An acceptable repeatability coefficient of ≤3mm was set based on diagnostic criteria for ACL insufficiency when using other mechanical devices to measure AP tibial translation. Precision within the individual invasive and non-invasive systems measuring AP translation of the tibia was acceptable throughout the range of flexion tested (repeatability coefficient ≤1.6 mm). Agreement between the two systems was acceptable when measuring AP laxity between full extension and 40° knee flexion (repeatability coefficient ≤2.1 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (repeatability coefficient >3 mm). These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard invasive system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative follow-up of ACL pathology.
IntroductionSoft tissue balancing is an important aspect of total knee replacement surgery. Traditionally sequential medial soft tissue release is performed for balancing in varus deformity. Its effects on kinematics and dynamic Femoro-Tibial-Mechanical-Angle (FTMA) have been described in extension and 90° flexion in coronal plane. However most studies have missed what happens when the knee flexes from 0 to 90 degrees This study is one of the first to describe its effects on knee kinematics throughout flexion. The aim was to look at deviation of FTMA in coronal plane with traditional sequential medial release with and without measured stress applied in varus and valgus at each point of measurement through the range of flexion.Methods12 cadaveric knees were studied using a computer navigation system. Rigid bodies were fixed to femur and tibia. The knee was exposed as per doing TKR surgery with medial parapatellar approach with no disturbance to the collateral ligaments. The anatomy was registered using a i...
Introduction: The geometry of uncemented press-fit ace-tabular cups is important in achieving primary stability to ensure bony ingrowth. This study compares the in vitro primary stability of two widely used designs.Methods: The primary stability of two uncemented ace-tabular cup designs (true hemispheric and peripherally enhanced) with the same 52mm diameter and produced by the same manufacturer, was tested in vitro. Polyethylene blocks of low and high density -representing softer and harder bone- were reamed using the manufacturers’ reamers. The cups were seated using an Instron 5800R machine. Peak failure loads and moments during uniaxial pull-out and tangential lever-out tests were used as measures of primary stability. Eighty tests were performed.Results: Low density substrate: no difference between the two designs for seating force or stability, with the substrate under-reamed by 2mm.High density substrate: the cups could not be adequately seated with a 2mm under-ream. Seating was achieved with 1mm u...