The objective of this article is to evaluate electrically evoked thresholds for cortical spreading depression (CSD) and stress-induced activation of trigeminal afferents in a rat model of medication-overuse headache (MOH).Sumatriptan or saline was delivered subcutaneously by osmotic minipump for six days to Sprague-Dawley rats. Two weeks after pump removal, animals were anesthetized and recording/stimulating electrodes implanted. The animals were pretreated with vehicle or topiramate followed by graded electrical stimulation within the visual cortex. CSD events were identified by decreased EEG amplitude and DC potential shift. Additional unanesthetized sumatriptan or saline-pretreated rats were exposed to bright light environmental stress and periorbital and hindpaw withdrawal thresholds were measured. Following CSD stimulation or environmental stress, immunohistochemical staining for Fos in the trigeminal nucleus caudalis (TNC) was performed.Sumatriptan pre-exposure significantly decreased electrical stimulation threshold to generate a CSD event. Topiramate normalized the decreased CSD threshold as well as stress-induced behavioral withdrawal thresholds in sumatriptan-treated rats compared to saline-treated animals. Moreover, CSD and environmental stress increased Fos expression in the TNC of sumatriptan-treated rats, and these effects were blocked by topiramate. Environmental stress did not elicit cutaneous allodynia or elevate TNC Fos expression in saline-treated rats.A previous period of sumatriptan exposure produced long-lasting increased susceptibility to evoked CSD and environmental stress-induced activation of the TNC that was prevented by topiramate. Lowered CSD threshold, and enhanced consequences of CSD events (increased activation of TNC), may represent an underlying biological mechanism of MOH related to triptans.
Spread through air spaces (STAS) in lung adenocarcinoma (LUAD) is a distinct pattern of intrapulmonary metastasis where tumor cells disseminate within the pulmonary parenchyma beyond the primary tumor margins. This phenomenon was officially included in the World Health Organization (WHO)'s classification of lung tumors in 2015. STAS is characterized by the spread of tumor cells in three forms: single cells, micropapillary clusters, and solid nests. Clinical studies have linked STAS to a poorer prognosis, higher recurrence risk, and more advanced clinicopathological staging in LUAD patients. In this study, we constructed radiomics models and deep learning models based on computed tomography (CT) for predicting preoperative STAS status in LUAD. A total of 395 (57.19±11.40 years old) patients with pathologically confirmed LUAD from two centers were enrolled in this retrospective study, in which STAS was detected in 146 patients (36.96%). The general clinical data, preoperative CT images, and the results of pathology reports of all patients were collected. Two experienced radiologists independently segmented the lesions by medical imaging interaction toolkit (MITK) software. The CT-based models only, the clinical-based models only, and the fusion model based on the two were constructed using radiomics and deep learning methods, respectively. The diagnostic performance of the different models was evaluated by comparing the area under the curve (AUC) of the subjects' receiver operating characteristics (ROCs). The deep learning model based on CT images achieved satisfactory discriminative performance in predicting STAS and outperformed the radiomics model and the clinical-radiomics model. The AUC of deep learning model was 0.918 for the internal test set and 0.766 for the external test set. The radiomics model had an AUC of 0.851 for the internal test set and an AUC of 0.699 for the external test set. The clinical-radiomics deep learning model was slightly less effective than the deep learning model (internal AUC =0.915, external AUC =0.773). The constructed deep learning model based on preoperative chest CT can be used to determine the STAS status of LUAD patients with good diagnostic performance and is superior to radiomics models.
Purpose: To investigate the effect of the ATP-P2Y2-PI3K/Akt signaling axis on promoting rabbit corneal endothelial cell (RCEC) proliferation in vitro. Methods: Five concentrations of adenosine triphosphate (ATP; 1, 10, 25, 50 and 100 μM) were added to RCECs, and the cell proliferation was detected using Cell Counting Kit-8 (CCK8) and Ki67 immunohistochemical staining. Other P2Y2 receptor agonists and antagonists were added to the cells, and the proliferation effect was evaluated using CCK8 to determine the involvement of the P2Y2 receptor. Changes in the expression of phosphorylated Akt in RCECs treated with different concentrations of extracellular ATP and the duration of extracellular ATP on Akt phosphorylation were investigated using Western blotting. The pharmacological profiles with or without the PI3K/Akt pathway inhibitors were also determined using Western blotting. Results: We found that 10 μM ATP strongly promoted RCEC proliferation in vitro. Additionally, 25 μM ATP had a proliferation effect, whereas other concentrations (1, 50 and 100 μM) had no effect compared with the control group. Selective P2Y2 receptor agonists (UTP, ATPγS and Ap4A) showed the same promotion effect, while P2Y2 antagonists and PI3K/Akt inhibitors inhibited the effect of ATP. Moreover, phosphorylated Akt could be induced by the addition of extracellular ATP at all five concentrations and lasted for 1 h. This phosphorylation was prevented by PI3K/Akt inhibitors and a P2Y2 antagonist. Conclusions: These findings showed that 10 μM ATP markedly promoted RCEC proliferation via the P2Y2-PI3K/Akt signaling axis.
CpG island methylator phenotype (CIMP), characterized by the concurrent and widespread hypermethylation of a cluster of CpGs, has been reported to play an important role in carcinogenesis. Limited studies have explored the role of CIMP in papillary thyroid carcinomas (PTCs). Here, in genome-wide DNA methylation analysis of 350 primary PTCs from the Cancer Genome Atlas database that were assessed using the Illumina HumanMethylation450K platform, our study helps to identify two subtypes displayed markedly distinct DNA methylation levels, termed CIMP (high levels of DNA methylation) and nCIMP subgroup (low levels of DNA methylation). Interestingly, PTCs with CIMP tend to have a higher degree of malignancy, since this subtype was tightly associated with older age, advanced pathological stage, and lymph node metastasis (all P < 0.05). Differential methylation analysis showed a broad methylation gain in CIMP and subsequent generalized gene set testing analysis based on the significantly methylated probes in CIMP showed remarkable enrichment in epithelial mesenchymal transition and angiogenesis hallmark pathways, confirming that the CIMP phenotype may promote the tumor progression from another perspective. Analysis of tumor microenvironment showed that CIMP PTCs are in an immune-depletion status, which may affect the effectiveness of immunotherapy. Genetically, the significantly higher tumor mutation burden and copy number alteration both at the genome and focal level confirmed the genomic heterogeneity and chromosomal instability of CIMP. tumor Corresponding to the above findings, PTC patients with CIMP showed remarkable poor clinical outcome as compared to nCIMP regarding overall survival and progression-free survival. More importantly, CIMP was associated with worse survival independent of known prognostic factors.
Abstract Dysregulation of the immune checkpoints has been identified as one of the mechanisms tumor cells employ for immune escape. Human papillomavirus (HPV) plays an important role in the etiology of one subset of Head and Neck Squamous Cell Carcinomas (HNSCC). Recent studies reported that PD-1/PD-L1 pathway may be correlated with HPV-associated HNSCC. The degree of PD-L1 expression has been reported to be increased in those patients with HPV-positive disease. Also, PD-L1 expression in HNSCC was observed in the primary, recurrent, and metastatic disease setting. However, the clinicopathological implications associated with PD-L1 in HNSCC, as well as in disease metastasis, remain largely unclear. Using immunohistochemistry (IHC) and In situ hybridization (ISH) on VENTANA BenchMark ULTRA automated stainers, 40 cases of HNSCC, with matching primary and metastatic cancer stages, were evaluated for expression of PD-L1, p16, a surrogate marker of transforming HPV infections, and presence of HPV. Formalin-fixed paraffin-embedded tumor samples were subjected to PD-L1- and p16-IHC as well as HPV-ISH. A potential association between PD-L1 expression and HPV status among primary tumors and matched metastases was analyzed. Our data show that expression of PD-L1 or p16 is concordant in the majority of HNSCC primary vs metastatic tumor cases tested. Agreement rate of p16 expression among 40 case pairs of primary vs metastatic tumor was 88.2% with a 95% Confidence Interval (CI) of (73.4-95.3). PD-L1 expression was 76.9% (61.7-87.4) concordant among the 40 case pairs. Agreement rate between PD-L1 and p16 was 77.1% (61.0-87.9) in primary cases and 51.3% (35.9-66.6) in metastatic cases. No obvious association between PD-L1 and p16 expression was observed. Citation Format: Chenglu C. Quon, Xiaoling Xia, Lupe Manriquez, Crystal Schemp, Dawn Sloane, Shahad Alabagi, Mohammed G. Abdelwahab, Pengfei Gu, Lizhen Pang, Khalid Hanif, Nicole Schechter. Correlation of PD-L1 expression and HPV status among primary and metastasized HNSCC tumors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 477.
Background and Objectives The purpose of this study is to evaluate the relationship between lymph node status (the number of resected lymph nodes; the number of metastatic lymph nodes, LNM, and lymph node ratio, LNR) and biochemical recurrence, disease-free survival (DFS), as well as overall survival (OS) in medullary thyroid carcinoma (MTC). Methods This study enrolled MTC patients at Tianjin Medical University Cancer Institute and Hospital between 2011 and 2019. We used Logistic regression analysis, Cox regression models and Kaplan-Meier test to identify risk factors influencing biochemical recurrence, DFS, and OS. Results We identified 160 patients who satisfied the inclusion criteria from 2011 to 2019. We used ROC analysis to define the cut-off value of LNR with 0.24. Multifocality, preoperative calcitonin levels, pathologic N stage, resected lymph nodes, LNM, LNR, and the American Joint Committee on Cancer (AJCC) clinical stage were significant ( P < 0.05) prognostic factors influencing biochemical cure. In univariable analyses, gross extrathyroidal extension, preoperative calcitonin levels, pathologic T classification, pathologic N stage, resected lymph nodes, LNM, LNR, AJCC clinical stage, and biochemical cure were significant ( P < 0.05) factors of DFS. When the multivariable analysis was performed, LNR was identified as predictor of DFS (HR = 4.818, 95% CI [1.270–18.276]). Univariable Cox regression models reflected that tumor size, pathologic N stage, and LNR were predictor of OS. Furthermore, multivariable analysis manifested that LNR was predictor of OS (HR = 10.061, 95% CI [1.222–82.841]). Conclusions This study illustrated that LNR was independent prognostic factor of DFS and OS in MTC. In addition, LNR influenced biochemical cure. Further investigations are needed to determine the optimal cut-off value for predicting prognosis.
The studies in this thesis research were conducted to investigate if sensitivity to induced cortical spread depression (CSD) or the consequence of a CSD event is affected by sumatriptan induced latent sensitization. Previous studies in our lab showed persistent exposure of sumatripan to rats produced a latent state of sensitization. Using persistent sumatripan exposed rats as a model for medication overuse headache, behavior, electrical stimulation threshold to provoke a CSD event and the immunoreactivity of c-Fos in the trigeminal nucleus caudalis (TNC) were characterized. Current results showed no statistical difference of electrically induced CSD thresholds in anesthetized rats measured at day 20 in sumatripan exposed rats compared with saline treated rats. Topiramate (80 mg/kg, i.p.) used clinically for prophylaxis of migraine headache significantly increased CSD threshold in both saline and sumatriptan infused rats. CSD events appear to be associated with trigeminal vascular system activation in TNC because c-Fos expression significantly enhanced in rats with electrically stimulated CSD events. As compared to saline treated rats, sumatriptan-exposed rats demonstrated a significantly higher number of c-Fos positive cells following the electrically stimulated CSD event. Under environmental stress (bright light), sumatripan exposed rats
Abstract Background: The linkage between IDO2 expression and cancer progression is still unclear, particularly in medullary thyroid carcinoma (MTC). Our purpose is to unveil the potential correlations between IDO2 status, clinical-pathological parameters, patients’ prognosis, and the possible immunomodulatory functions in MTC. Methods: Immunohistochemical expression levels of IDO2 were evaluated in the resected MTC surgical specimens and corresponding lymph nodes. CD4+ T cell infiltration was also evaluated by immunohistochemical analysis in the MTC tissues. The association of the IDO2 expression level with clinicopathologic characteristics, overall survival (OS)/recurrence-free survival (RFS), and CD4+T cell infiltration were retrospectively investigated. Results: High expression of IDO2 is closely associated with more aggressive clinicopathological features, such as multifocality, ETE, a higher pT stage and especially a higher pN stage. Moreover, a significant difference in RFS was observed between the IDO2-high and IDO2-low groups. IDO2 expression of lymph node tissues was significantly related to the metastasis status. Furthermore, we found that IDO2 expression is negatively correlated with CD4+T cell infiltrations in MTC tissues. Conclusions: The expression level of IDO2 is associated with aggressive characteristics and is predictive of poor prognosis in patients with MTC. Also, an interesting observation is that IDO2 involvement in MTC showed a moderate sexual dimorphism, of which female patients tend to be more affected by IDO2 status. Moreover, our results showed the potential immunomodulatory functions of IDO2. The close relationship between IDO2 and CD4+T cell infiltration in the MTC microenvironment, together with its potential prognostic implications, makes it possible for IDO2 to serve as an alternative drug target in cancer immunotherapy and as a new prognostic tool.
Abstract Homologous recombination-mediated genome engineering has been broadly applied in prokaryotes with high efficiency and accuracy. However, this method is limited in realizing larger-scale genome editing with numerous genes or large DNA fragments because of the relatively complicated procedure for DNA editing template construction. Here, we describe a CRISPR-Cas9 assisted non-homologous end-joining (CA-NHEJ) strategy for the rapid and efficient inactivation of bacterial gene (s) in a homologous recombination-independent manner and without the use of selective marker. Our study show that CA-NHEJ can be used to delete large chromosomal DNA fragments in a single step that does not require homologous DNA template. It is thus a novel and powerful tool for bacterial genomes reducing and possesses the potential for accelerating the genome evolution.