Tactile-based sensing technology represents one of the most promising methods for interacting with their surrounding environment. Consequently, flexible tactile sensing has garnered significant attention from researchers worldwide. In this study, triboelectricity and piezoelectricity were combined to propose a multifunctional self-powered tactile sensor (MSPTS). Notably, new and innovative self-healing electrodes were embedded and synthesized from HPDMS (poly(dimethylsiloxane)) and boric acid in the MSPTS, MSPTS demonstrated a linear detection range of 0.25–5 kPa with a sensitivity of 246.28 mV/kPa, indicating substantial improvements in sensor sensitivity, output performance, and anti-interference capability. Our method of forming hydrogen bonds between a self-healing material (SHM) and a liquid metal (LM) effectively addressed the issue of LM leakage within the flexible matrix under pressure, thus preventing sensor failure. The borate dynamic bonding conferred self-healing properties to the electrode when it was damaged. The MSPTS was successfully applied to pressure detection, material identification, and human body movement detection, significantly broadening the application range of flexible electronic devices.
Flexible sensors produced through three-dimensional (3D) printing have exhibited promising results in the context of underwater sensing detection (for applications in navigational vehicles and human activities). However, underwater vehicles and activities such as swimming and diving are highly susceptible to drag, which can cause negative impacts such as reduced speed and increased energy consumption. Additionally, microbial adhesion can shorten the service life of these vehicles. However, natural organisms are able to circumvent such problems, with shark skin offering excellent barrier properties and ruffled papillae providing effective protection against fouling. Here, we show that a sandwich system consisting of a spraying layer, conductive elastomer composite, and encapsulation layer can be printed for multifunctional integrated underwater sensors. The modulated viscoelastic properties of liquid metal form the foundation for printing features, while its pressure-activated properties offer the potential for switchable sensors. An integrated drag reduction and antifouling layer were created by combining the shark skin surface shield scale structure with the lotus leaf surface papillae structure. A 3D-printed flexible sensor was designed using our approach to monitor attitude changes and strain in underwater environments, showcasing its capabilities. Our printed sensors can reduce biological attachment density by more than 50% and reduce underwater drag by 8.6-10.3%.
The transverse skin of dolphins exhibits a remarkable drag reduction effect. Although previous studies have identified the drag reduction effect of transverse grooves, no clear guidelines exist regarding the impact of groove parameters on turbulent drag reduction. Hence, this paper suggests a novel numerical study using the Reynolds-averaged Navier–Stokes method to investigate the influence of half-sine wave structure parameters on turbulent drag. The results showed that the aspect ratio of shape parameters significantly affected the drag reduction rate by altering the flow velocity and drag distribution near the wall and increasing the viscous sublayer thickness. Moreover, a novel index friction pressure ratio FPr was introduced to evaluate the drag reduction. It was revealed that the ratio FPr was stable at optimal drag reduction effect regardless of the velocity. By optimizing the FPr, a maximum drag reduction of 29.3% was achieved. These findings provide insight for optimizing transverse groove in drag-reducing surface applications.
Abstract 3D printing has shown promise in the development of notable sensing and health detection devices. Nonetheless, challenges remain in the concurrent development of highly durable wearable sensors with low‐friction surfaces. This challenge serves as a limiting factor in the operational lifespans of these sensors. In this study, a magnetically assisted 3D printing technique is developed to fabricate composites reinforced with magnetic Fe 3 O 4 @SiO 2 nanochains (NCs) with dimensions of 60.2 µm in length (L) and 0.2 µm in diameter (D), indicating an L:D ratio exceeding 300. By applying a vertical magnetic field and extrusion flow field to the sensor's surface layer, the NCs can be arranged differently (together with the printed textures), reducing the coefficient of friction by 27.7% and improving the wear resistance. This approach is inspired by nacre, known for its impressive durability and resilience. A motion monitoring sensor with an extended lifespan is successfully fabricated by using liquid metal ink integrated with an anti‐wear layer. These findings offer significant insights into the evolution of wearable sensors, demonstrating their adaptability to multi‐material printing and resulting in improved performance and service lives.
Investigating droplet wetting and icing behavior is crucial for comprehending the principles of surface icing and the design of anti-icing surfaces. In this study, we present the evidence from molecular dynamics (MD) simulations that reveal a hitherto unreported behavior of droplet wetting and icing adhesion on surfaces with lattice constants from 2.7 to 4.5 Å. Here, we observe that the contact angles (CA) of droplets on a face-centered cubic (FCC) lattice surface consistently correlate positively with the lattice constant. Further examination of droplet behavior on an idealized crystal surface reveals that hydrophilic surfaces (e.g., CA = 85°) inhibit freezing more effectively than hydrophobic surfaces (e.g., CA = 97°). This finding contradicts the conventional explanation that hydrophobic surfaces reduce heterogeneous nucleation, thereby delaying icing. This study introduces a mechanistic explanation for the promotion of water icing by hydrophobic surfaces and offers a novel design concept for the development of anti-ice surfaces in future applications.