To address challenges in screening for chronic kidney disease (CKD), we devised a deep learning-based CKD screening model named UWF-CKDS. It utilizes ultra-wide-field (UWF) fundus images to predict the presence of CKD. We validated the model with data from 23 tertiary hospitals across China. Retinal vessels and retinal microvascular parameters (RMPs) were extracted to enhance model interpretability, which revealed a significant correlation between renal function and RMPs. UWF-CKDS, utilizing UWF images, RMPs, and relevant medical history, can accurately determine CKD status. Importantly, UWF-CKDS exhibited superior performance compared to CTR-CKDS, a model developed using the central region (CTR) cropped from UWF images, underscoring the contribution of the peripheral retina in predicting renal function. The study presents UWF-CKDS as a highly implementable method for large-scale and accurate CKD screening at the population level.
BACKGROUND Spondyloarthritis (SpA), a chronic inflammatory disorder, predominantly impacts the sacroiliac joints and spine, significantly escalating the risk of disability. SpA’s complexity, as evidenced by its diverse clinical presentations and symptoms that often mimic other diseases, presents substantial challenges in its accurate diagnosis and differentiation. This complexity becomes even more pronounced in nonspecialist health care environments due to limited resources, resulting in delayed referrals, increased misdiagnosis rates, and exacerbated disability outcomes for patients with SpA. The emergence of large language models (LLMs) in medical diagnostics introduces a revolutionary potential to overcome these diagnostic hurdles. Despite recent advancements in artificial intelligence and LLMs demonstrating effectiveness in diagnosing and treating various diseases, their application in SpA remains underdeveloped. Currently, there is a notable absence of SpA-specific LLMs and an established benchmark for assessing the performance of such models in this particular field. OBJECTIVE Our objective is to develop a foundational medical model, creating a comprehensive evaluation benchmark tailored to the essential medical knowledge of SpA and its unique diagnostic and treatment protocols. The model, post-pretraining, will be subject to further enhancement through supervised fine-tuning. It is projected to significantly aid physicians in SpA diagnosis and treatment, especially in settings with limited access to specialized care. Furthermore, this initiative is poised to promote early and accurate SpA detection at the primary care level, thereby diminishing the risks associated with delayed or incorrect diagnoses. METHODS A rigorous benchmark, comprising 222 meticulously formulated multiple-choice questions on SpA, will be established and developed. These questions will be extensively revised to ensure their suitability for accurately evaluating LLMs’ performance in real-world diagnostic and therapeutic scenarios. Our methodology involves selecting and refining top foundational models using public data sets. The best-performing model in our benchmark will undergo further training. Subsequently, more than 80,000 real-world inpatient and outpatient cases from hospitals will enhance LLM training, incorporating techniques such as supervised fine-tuning and low-rank adaptation. We will rigorously assess the models’ generated responses for accuracy and evaluate their reasoning processes using the metrics of fluency, relevance, completeness, and medical proficiency. RESULTS Development of the model is progressing, with significant enhancements anticipated by early 2024. The benchmark, along with the results of evaluations, is expected to be released in the second quarter of 2024. CONCLUSIONS Our trained model aims to capitalize on the capabilities of LLMs in analyzing complex clinical data, thereby enabling precise detection, diagnosis, and treatment of SpA. This innovation is anticipated to play a vital role in diminishing the disabilities arising from delayed or incorrect SpA diagnoses. By promoting this model across diverse health care settings, we anticipate a significant improvement in SpA management, culminating in enhanced patient outcomes and a reduced overall burden of the disease. INTERNATIONAL REGISTERED REPORT DERR1-10.2196/57001
With the development of human-computer interaction technology,real-time gesture recognition based on bare hands attracts more and more attention.Most methods based on bare hands are not real-time which can only deal with data offline.A new scheme of feature extraction based on Bighand-Smallhand was proposed.The hands were divided into Bighand and Smallhand,and the overlap of both hands was treated as one hand.Totally,17 words were tested with this method.The results indicate that the new scheme is real-time with the discrimination of 94.1%.
Spondyloarthritis (SpA), a chronic inflammatory disorder, predominantly impacts the sacroiliac joints and spine, significantly escalating the risk of disability. SpA's complexity, as evidenced by its diverse clinical presentations and symptoms that often mimic other diseases, presents substantial challenges in its accurate diagnosis and differentiation. This complexity becomes even more pronounced in nonspecialist health care environments due to limited resources, resulting in delayed referrals, increased misdiagnosis rates, and exacerbated disability outcomes for patients with SpA. The emergence of large language models (LLMs) in medical diagnostics introduces a revolutionary potential to overcome these diagnostic hurdles. Despite recent advancements in artificial intelligence and LLMs demonstrating effectiveness in diagnosing and treating various diseases, their application in SpA remains underdeveloped. Currently, there is a notable absence of SpA-specific LLMs and an established benchmark for assessing the performance of such models in this particular field.