Hydrogen and nuclear energies are expected as excellent energy resources and are environmentally friendly owing to the absence of emission of carbon dioxide. Toshiba has been developing the high-temperature steam electrolysis technology using solid-oxide cells for hydrogen production by nuclear energy. This paper shows the possibility of hydrogen production by high-temperature steam electrolysis using nuclear energy, through examination of the system concept applied to a high-temperature gas cooling reactor, with review of the results of research and development in Toshiba in relation to development issues clarified from tha viewpoint of hydrogen production efficiency, hydrogen production cost, and development risk.
Genetic identification among cinnamon species was studied by analyzing nucleotide sequences of chloroplast DNA from four species (Cinnamomum cassia, C. zeylanicum, C. burmannii and C. sieboldii). The two regions studied were the intergenic spacer region between the trnL 3'exon and trnF exon (trnL -trnF IGS) and the trnL intron region. We found nucleotide variation at one site in the trnL-trnF IGS, and at three sites in the trnL intron. With the sequence data from analysis of these regions, the four Cinnamomum species used in this study were correctly identified. Furthermore, single-strand conformation polymorphism (SSCP) analysis of PCR products from the trnL-trnF IGS and the trnL intron resulted in different SSCP band patterns among C. cassia, C. zeylanicum and C. burmannii.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Ovarian follicular development is initiated by FSH secreted from the pituitary gland. The FSH-induced follicular development involves granulosa cell proliferation and differentiation. We demonstrated that a growth factor of epidermal growth factor (EGF) family epiregulin was rapidly induced in the primary culture of rat ovarian granulosa cells by FSH within 1 h. Epiregulin gene expression was also observed in granulosa cells of antral ovarian follicles from pregnant mare's serum gonadotropin-primed rats in vivo. To analyze the regulation of gene expression of epiregulin, we isolated and characterized the rat epiregulin gene of 22.1 kb, including 3.8 kb of 5'-upstream region as well as all five exons and four introns. We determined the transcriptional start site of rat epiregulin gene by primer extension analysis and then characterized the upstream promoter region of the gene. By using a luciferase reporter system, deletion and mutation analyses of rat epiregulin gene promoter region revealed that 125 bp upstream of transcriptional start site was essential, and that two CT boxes and one GT box within this region were important for the gene expression. We also demonstrated by EMSAs that Sp1/Sp3 proteins were involved in the epiregulin gene expression via the upstream sequence. Involvement of Sp1/Sp3 was also demonstrated that transfection of Sp1 or Sp3 expression plasmids dramatically increased the epiregulin gene promoter activities about 90- or 7.9-fold, respectively, in Drosophila SL2 cells that lack endogenous Sp family proteins. Such an increase in the promoter activity was also observed in mammalian cells when NIH-3T3 cells were used. In conclusion, we demonstrated here for the first time that EGF-type growth factor epiregulin is rapidly and strongly induced in the ovarian granulosa cells by FSH stimulation, and that two CT boxes and one GT box present in the upstream region are essential for the promoter activity of rat epiregulin. We also demonstrated that Sp family members play crucial roles in the epiregulin promoter activity through the CT boxes. The restricted and hormonally regulated expression of epiregulin in the rat ovarian granulosa cells may correspond to the physiological relevance of this peptide growth factor to the FSH-induced ovarian follicular growth and maturation.
We analyzed the nucleotide sequences of the non-coding region of chloroplast DNA : the intergenic spacer between trnL (UAA) 3'exon and trnF (GAA). Two kinds of sequence, "type-1" and "type-2", were detected in 33 populations of Cannabis sativa. The length of the "type-1" fragment was 354 bp. In contrast, the "type-2" fragment from 3 populations was 353 bp long, with only one base deletion compared to "type-1." The fragment length from Humulus lupulus was 353 bp with a 1-bp deletion, and ten 1-bp substitutions compared to the sequences from C. sativa "type-1." Furthermore, we could clearly identify differences between C. sativa and H. lupulus using single-strand conformation polymorphism of PCR products (PCR-SSCP) analysis.
Hex is one of the homeobox genes suggested to be important for hematopoietic cell differentiation. However, its biological function and mechanism of transcriptional regulation in hematopoietic cells remain elusive. We have identified the regulatory region necessary for transcription of the mouse Hex gene in K562 leukemia cells through transient reporter assays involving various deletion mutants. This region, comprising +775 to +1177 in the first intron, had enhancer-like properties and showed high activity in other hematopoietic cell lines such as U937, HEL, and RAW264.7, but little activity in other Hex-expressing cell lines such as MH(1)C(1) and H4IIE hepatoma cells, suggesting that this region functions as a hematopoietic cell-specific enhancer-like element. Binding site mutation of hematopoietic transcription factors, such as GATAs and c-Myb present in the enhancer-like element, significantly decreased the luciferase reporter gene expression in K562 cells. Electrophoretic mobility shift assays showed that GATA-1, GATA-2, or c-Myb actually binds to three of these putative binding sites, and also suggested that several unidentified factors might interact with the enhancer-like element. Overexpression of GATA-1, GATA-2, or c-Myb stimulated the enhancer-like activity via these three binding sites. Thus, we conclude that Hex expression in hematopoietic cells is mainly regulated by GATA-1, GATA-2, and c-Myb via this intronic enhancer-like element.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
TOSHIBA developed a unique ceramic which can absorb about 400 times as much CO/sub 2/ as their volume and can repeat CO/sub 2/ absorption and releasing. Combining both the fuel reforming technique and CO/sub 2/ absorption technique using this ceramic, it becomes an effective way for the realization of the CO/sub 2/ collection technique from the fuel gas at the stage before combustion.