Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease1–6. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte–monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients. We find that RAS-mutant leukaemia stem cells are resistant to venetoclax, driving clinical resistance and relapse with monocytic features.
<p>Supplementary Table S3. Statistics of aligned reads from the CUT&RUN-seq analysis of H3K27ac in ESCC cells with Trp53R172H/- (n=3) and Trp53+/+ (n=2).</p>
<div>Abstract<p>Subunits of SWI/SNF chromatin remodeling complexes are frequently mutated in human malignancies. The PBAF complex is composed of multiple subunits, including the tumor-suppressor protein PBRM1 (BAF180), as well as ARID2 (BAF200), that are unique to this SWI/SNF complex. <i>PBRM1</i> is mutated in various cancers, with a high mutation frequency in clear cell renal cell carcinoma (ccRCC). Here, we integrate RNA-seq, histone modification ChIP-seq, and ATAC-seq data to show that loss of PBRM1 results in <i>de novo</i> gains in H3K4me3 peaks throughout the epigenome, including activation of a retinoic acid biosynthesis and signaling gene signature. We show that one such target gene, <i>ALDH1A1</i>, which regulates a key step in retinoic acid biosynthesis, is consistently upregulated with PBRM1 loss in ccRCC cell lines and primary tumors, as well as non-malignant cells. We further find that ALDH1A1 increases the tumorigenic potential of ccRCC cells. Using biochemical methods, we show that ARID2 remains bound to other PBAF subunits after loss of PBRM1 and is essential for increased ALDH1A1 after loss of PBRM1, whereas other core SWI/SNF components are dispensable, including the ATPase subunit BRG1. In total, this study uses global epigenomic approaches to uncover novel mechanisms of PBRM1 tumor suppression in ccRCC.</p>Implications:<p>This study implicates the SWI/SNF subunit and tumor-suppressor PBRM1 in the regulation of promoter histone modifications and retinoic acid biosynthesis and signaling pathways in ccRCC and functionally validates one such target gene, the aldehyde dehydrogenase ALDH1A1.</p></div>