Temperature monitoring and prediction play a crucial role in energy consumption control within data centers (DC). However, installing numerous temperature sensors in a large DC can incur significant costs and maintenance challenges. Moreover, due to environmental constraints and measurement technology limitations, missing or distorted data may arise in the measurement process of critical parameters. To address this issue, we utilize implicit neural representation to reconstruct the temperature distribution, thereby completing the missing and distorted temperature data. In this paper, we parameterize the complex temperature distribution as a continuous function, which implicitly represents the temperature within the DC as a mapping from the spatial coordinates and active power of the cabinet in the DC to the corresponding temperature. Our proposed methods demonstrate both quantitative and qualitative effectiveness in accurately completing the temperature information and rapidly reconstructing the temperature distribution. This approach offers a novel solution for addressing missing data and data distortion issues in DC temperature measurement.
Large language models (LLMs) are susceptible to generating hallucinated information, despite the integration of retrieval-augmented generation (RAG). Parallel context extension (PCE) is a line of research attempting to effectively integrating parallel (unordered) contexts, while it still suffers from hallucinations when adapted to RAG scenarios. In this paper, we propose DePaC (Dehallucinating Parallel Context Extension), which alleviates the hallucination problem with context-aware negative training and information-calibrated aggregation. DePaC is designed to alleviate two types of in-context hallucination: fact fabrication (i.e., LLMs present claims that are not supported by the contexts) and fact omission (i.e., LLMs fail to present claims that can be supported by the contexts). Specifically, (1) for fact fabrication, we apply the context-aware negative training that fine-tunes the LLMs with negative supervisions, thus explicitly guiding the LLMs to refuse to answer when contexts are not related to questions; (2) for fact omission, we propose the information-calibrated aggregation which prioritizes context windows with higher information increment from their contexts. The experimental results on nine RAG tasks demonstrate that DePaC significantly alleviates the two types of hallucination and consistently achieves better performances on these tasks.
Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems. To further improve their reasoning capabilities, this work explores whether LLMs can LEarn from MistAkes (LEMA), akin to the human learning process. Consider a human student who failed to solve a math problem, he will learn from what mistake he has made and how to correct it. Mimicking this error-driven learning process, LEMA incorporates mistake-correction data pairs during fine-tuning LLMs. Specifically, we first collect inaccurate reasoning paths from various LLMs, and then employ GPT-4 as a ''corrector'' to identify the mistake step, explain the reason for the mistake, correct the mistake and generate the final answer. In addition, we apply a correction-centric evolution strategy that effectively expands the question set for generating correction data. Experiments across various LLMs and reasoning tasks show that LEMA effectively improves CoT-alone fine-tuning. Our further ablations shed light on the non-homogeneous effectiveness between CoT data and correction data. These results suggest a significant potential for LLMs to improve through learning from their mistakes. Our code, models and prompts are publicly available at https://github.com/microsoft/LEMA.
While many contemporary large language models (LLMs) can process lengthy input, they still struggle to fully utilize information within the long context, known as the lost-in-the-middle challenge. We hypothesize that it stems from insufficient explicit supervision during the long-context training, which fails to emphasize that any position in a long context can hold crucial information. Based on this intuition, our study presents information-intensive (IN2) training, a purely data-driven solution to overcome lost-in-the-middle. Specifically, IN2 training leverages a synthesized long-context question-answer dataset, where the answer requires (1) fine-grained information awareness on a short segment (~128 tokens) within a synthesized long context (4K-32K tokens), and (2) the integration and reasoning of information from two or more short segments. Through applying this information-intensive training on Mistral-7B, we present FILM-7B (FILl-in-the-Middle). To thoroughly assess the ability of FILM-7B for utilizing long contexts, we design three probing tasks that encompass various context styles (document, code, and structured-data context) and information retrieval patterns (forward, backward, and bi-directional retrieval). The probing results demonstrate that FILM-7B can robustly retrieve information from different positions in its 32K context window. Beyond these probing tasks, FILM-7B significantly improves the performance on real-world long-context tasks (e.g., 23.5->26.9 F1 score on NarrativeQA), while maintaining a comparable performance on short-context tasks (e.g., 59.3->59.2 accuracy on MMLU). Github Link: https://github.com/microsoft/FILM.