Objective To explore the role of sestrin2 (SESN2) in sorafenib primary resistance and the underlying mechanism in hepatocellular carcinoma (HCC) cells. Methods Real-time quantitative PCR (qRT-PCR) and Western blot analysis were performed to examine SESN2 mRNA and protein levels in Bel-7404, SNU-398, HLE, HLF and Hep3B cell lines. Immunohistochemical staining was used to detect SESN2 expression in HCC tissues. After the treatment of 0, 2, 5, 10, 15, 20, 25 μmol/L sorafenib for 24 hours, CCK-8 assay was performed to detect the cell viability and subsequent IC50 of sorafenib in the above HCC cell lines. After the treatment of 0, 2, 4, 6, 8 μmol/L sorafenib for 24 hours, qRT-PCR and Western blot analysis were conducted to measure the alterations of SESN2 mRNA and protein expressions in Bel-7404 and SNU-398 cells. CCK-8 assay and flow cytometry were performed to examine the viability and apoptosis of Bel-7404 and SNU-398 cells after sorafenib treatment with or without SESN2 knockdown by siRNA transfection. Western blot analysis was used to test the expressions of AKT and phosphorylated-AKT. Results Compared with the control, SESN2 expression markedly increased in both HCC cell lines and tissues and there was a positive correlation between SESN2 expression and IC50 of sorafenib in different HCC cell lines. Subsequently, the mRNA and protein levels of SESN2 were significantly elevated after sorafenib treatment in Bel-7404 and SNU-398 cells, and SESN2 knockdown led to decreased cell viability and increased cell apoptosis after sorafenib treatment. More importantly, SESN2 knockdown impaired sorafenib-induced AKT activation in HCC cells. Conclusion SESN2 up-regulation conferred primary resistance to sorafenib by activating AKT in HCC cells.
Schistosomiasis remains a major public health problem and causes substantial economic impact in east China, particularly along the Yangtze River Basin. Disease forecasting and surveillance can assist in the development and implementation of more effective intervention measures to control disease. In this study, we applied a Bayesian hierarchical spatio-temporal model to describe trends in schistosomiasis risk in Anhui Province, China, using annual parasitological and environmental data for the period 1997-2010. A computationally efficient approach-Integrated Nested Laplace Approximation-was used for model inference. A zero-inflated, negative binomial model best described the spatio-temporal dynamics of schistosomiasis risk. It predicted that the disease risk would generally be low and stable except for some specific, local areas during the period 2011-2014. High-risk counties were identified in the forecasting maps: three in which the risk remained high, and two in which risk would become high. The results indicated that schistosomiasis risk has been reduced to consistently low levels throughout much of this region of China; however, some counties were identified in which progress in schistosomiasis control was less than satisfactory. Whilst maintaining overall control, specific interventions in the future should focus on these refractive counties as part of a strategy to eliminate schistosomiasis from this region.
Amyotrophic Lateral Sclerosis (ALS) is a lethal neurodegenerative disease that damages motor neurons in the central nervous system, causing progressive muscle weakness that ultimately leads to death. However, its underlying mechanisms still need to be fully understood, particularly the heterogeneity and similarity between various gene mutants during disease progression. In this study, we conducted temporal RNA-seq profiling in human induced pluripotent stem cells (hiPSCs) and iPSC-derived motor neurons (iMNs) carrying the C9orf72, FUS, TARDBP, and SOD1 mutations from both ALS patients and healthy individuals. We discovered dysregulated gene expression and alternative splicing (AS) throughout iMN development and maturation, and ALS iMNs display enrichment of cytoskeletal defects and synaptic alterations from premature stage to mature iMNs. Our findings indicate that synaptic gene dysfunction is the common molecular hallmark of fALS, which might result in neuronal susceptibility and progressive motor neuron degeneration. Analysis of upstream splicing factors revealed that differentially expressed RNA-binding proteins (RBPs) in ALS iMNs may cause abnormal AS events, suggesting the importance of studying RBP defects in ALS research. Overall, our research provides a comprehensive and valuable resource for gaining insights into the shared mechanisms of ALS pathogenesis during motor neuron development and maturation in iMN models.
Accumulated evidence shows that elevated urotensin II (UII) levels are associated with cardiovascular diseases. However, the role of UII in the initiation, progression, and regression of atherosclerosis remains to be verified. Different stages of atherosclerosis were induced in rabbits by a 0.3% high cholesterol diet (HCD) feeding, and either UII (5.4 μg/kg/h) or saline was chronically infused via osmotic mini-pumps. UII promoted atherosclerotic fatty streak formation in ovariectomized female rabbits (34% increase in gross lesion and 93% increase in microscopic lesion), and in male rabbits (39% increase in gross lesion). UII infusion significantly increased the plaque size of the carotid and subclavian arteries (69% increase over the control). In addition, UII infusion significantly enhanced the development of coronary lesions by increasing plaque size and lumen stenosis. Histopathological analysis revealed that aortic lesions in the UII group were characterized by increasing lesional macrophages, lipid deposition, and intra-plaque neovessel formation. UII infusion also significantly delayed the regression of atherosclerosis in rabbits by increasing the intra-plaque macrophage ratio. Furthermore, UII treatment led to a significant increase in NOX2 and HIF-1α/VEGF-A expression accompanied by increased reactive oxygen species levels in cultured macrophages. Tubule formation assays showed that UII exerted a pro-angiogenic effect in cultured endothelial cell lines and this effect was partly inhibited by urantide, a UII receptor antagonist. These findings suggest that UII can accelerate aortic and coronary plaque formation and enhance aortic plaque vulnerability, but delay the regression of atherosclerosis. The role of UII on angiogenesis in the lesion may be involved in complex plaque development.