Adult rabbit smooth muscles contain two types of myosin heavy chain (MHC) isoforms, SM1 and SM2 which are generated through alternative RNA splicing from a single gene (Nagai, R., Kuro-o, M., Babij, P. & Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). We previously reported that the expression of SM1 and SM2 during vascular development is differentially regulated at the level of RNA splicing, whereby SM1 is constitutively expressed from early development but SM2 appear after birth (Kuro-o, M., Nagai, R., Tsuchimochi, H., Katoh, H., Yazaki, Y., Ohkubo, A. & Takaku, F. (1989) J. Biol. Chem. 264, 18272-18275). We also demonstrated that embryonic vascular smooth muscles contain a third type of MHC isoform, referred to as SMemb in this report, which comigrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with SM2. In the present study we have isolated and characterized a cDNA clone (FSMHC34) for SMemb. FSMHC34 encodes the light meromyosin region including the carboxyl terminus and showed 70% amino acid sequence identity with SM1 or SM2. SMemb is a nonmuscle-type MHC and identical with brain MHC, but clearly distinct from 196-kDa nonmuscle MHC in cultured smooth muscle cells. The expression of SMemb was predominant in embryonic and perinatal aortas, but down-regulated with vascular development. Interestingly SMemb was reexpressed in proliferating smooth muscle cells of arteriosclerotic neointimas. These results suggest that smooth muscle proliferation is coupled to the expression of SMemb and that dedifferentiation of smooth muscles toward the embryonic phenotype is involved in the mechanisms underlying atherosclerosis.
Rapid urbanization has promoted house renovations and refurbishment in urban and rural cities. Indoor pollutants emitted through renovations and refurbishment processes have raised public concerns owing to their adverse effects on human health. In the present study, the sources of formaldehyde and specific volatile organic compounds (VOCs) are used to model the health effects associated with exposure to formaldehyde and specific VOCs and the loading factors of building materials for newly renovated homes. The present study is carried out to identify the sources of formaldehyde and specific VOCs in newly renovated houses and develop probabilistic prediction models of the health effects to explore the health risks of residents and the potential contributions of multilayer wood materials responsible for indoor pollutants. In living rooms and bedrooms, the average concentrations of formaldehyde and TVOCs in closed window conditions were higher than those in opened window conditions. Multi-layer wooden structures were a significant predictor of indoor VOC concentrations in houses. The 95 percentile values of Monte Carlo simulations (MCS P95) of the hazard index and cancer risk were lower and slightly higher than the acceptable level, respectively. Prediction models for the concentrations of formaldehyde and selected VOCs in newly renovated houses were first established using probabilistic and sensitive approaches. The multi-layer wood materials, including the wooden floor, cold paint multi-layer wooden materials, and multi-layer materials for system furniture, were responsible for the contribution of these levels of formaldehyde and selected VOCs in the newly renovated houses. Our results provide a strategy for eliminating indoor pollutants emitted from construction and building/furnishing materials.