The onset of various kidney diseases has been reported after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. However, detailed clinical and pathological features are lacking. We screened and analyzed patients with newly diagnosed kidney diseases after inactivated SARS-CoV-2 vaccination in Peking University First Hospital from January 2021 to August 2021, and compared them with the reported cases in the literature. We obtained samples of blood, urine and renal biopsy tissues. Clinical and laboratory information, as well as light microscopy, immunostaining and ultrastructural observations, were described. The SARS-CoV-2 spike protein and nucleoprotein were stained using the immunofluorescence technique in the kidney biopsy samples. SARS-CoV-2 specific antibodies were tested using magnetic particle chemiluminescence immunoassay. The study group included 17 patients with a range of conditions including immune-complex-mediated kidney diseases (IgA nephropathy, membranous nephropathy and lupus nephritis), podocytopathy (minimal change disease and focal segmental glomerulosclerosis) and others (antineutrophil-cytoplasmic-antibody-associated vasculitis, anti-glomerular basement membrane nephritis, acute tubulointerstitial nephritis and thrombotic microangiopathy). Seven patients (41.18%) developed renal disease after the first dose and ten (58.82%) after the second dose. The kidney disease spectrum as well as clinicopathological features are similar across different types of SARS-CoV-2 vaccines. We found no definitive evidence of SARS-CoV-2 spike protein or nucleoprotein deposition in the kidney biopsy samples. Seropositive markers implicated abnormal immune responses in predisposed individuals. Treatment and follow-up (median = 86 days) showed that biopsy diagnosis informed treatment and prognosis in all patients. In conclusion, we observed various kidney diseases following SARS-CoV-2 vaccine administration, which show a high consistency across different types of SARS-CoV-2 vaccines. Our findings provide evidence against direct vaccine protein deposition as the major pathomechanism, but implicate abnormal immune responses in predisposed individuals. These findings expand our understanding of SARS-CoV-2 vaccine renal safety.
Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a severe hemorrhagic disease with a mortality rate reaching 100%. Despite extensive research on ASFV mechanisms, no safe and effective vaccines or antiviral treatments have been developed. Live attenuated vaccines generated via gene deletion are considered to be highly promising. We developed a novel recombinant ASFV strain by deleting MGF360-10L and MGF505-7R, significantly reducing virulence in pigs. In the inoculation experiment, pigs were infected with 104 50% hemadsorption doses (HAD50) of the mutant strain. All the animals survived the observation period without showing ASF-related clinical signs. Importantly, no significant viral infections were detected in the cohabitating pigs. In the virus challenge experiment, all pigs succumbed after being challenged with the parent strain. RNA-seq analysis showed that the recombinant virus induced slightly higher expression of natural immune factors than the parent ASFV; however, this level was insufficient to provide immune protection. In conclusion, our study demonstrates that deleting MGF360-10L and MGF505-7R from ASFV CN/GS/2018 significantly reduces virulence but fails to provide protection against the parent strain.
Hepatoma Research is an open access journal and focuses on all topics related to hepatoma. The following articles are especially welcome: pathogenesis, clinical examination and early diagnosis of hepatoma, complications of hepatoma, and their preventions and treatments, etc.
We previously prepared a tumor necrosis factor (TNF)‐α mutant (rmhTNF‐α) that showed higher antitumor activity and lower systemic toxicity compared with native TNF‐α. The safety profile and the pharmacokinetic characteristics of rmhTNF‐α were suited for clinical use according to biological Investigational New Drug application, a standard guideline for new drug investigation in China. Here, we evaluate the activity and safety of rmhTNF‐α combined with chemotherapies in head/neck, lung, colorectal, stomach, and renal cancer patients. Ninety‐five eligible patients received i.m. rmhTNF‐α treatment combined with standard chemotherapies. Another 95 patients were treated with standard chemotherapies. After two treatment cycles, one patient achieved a complete response and 24 patients had partial response, yielding an overall response rate (complete response + partial response) of 27.47% in the rmhTNF‐α plus chemotherapy cohort. The chemotherapy alone group acquired only a 11.39% response rate ( P < 0.05). When compared between different cancers, a 48.89% response rate was detected in the 45 lung cancer patients of the combination cohort. The most common grade 1–2 adverse events of rmhTNF‐α were drug‐related fever, allergy, flu‐like symptoms, and myalgia. No significant difference was found in grade 3–4 toxicities between the two cohorts. Based on the results of this research, rmhTNF‐α can significantly enhance the effectiveness of chemotherapy. An extended phase III trial of rmhTNF‐α combined with standard chemotherapy is warranted for evaluating its antitumor activity and toxicity in a larger cohort of tumor patients. The studies in this paper were registered with the State Food and Drug Administration of China (No. 2003S00692). ( Cancer Sci 2012; 103: 288–295)
Both IgA nephropathy (IgAN) and lupus nephritis (LN) are immunity-related diseases with a complex, polygenic, and pleiotropic genetic architecture. However, the mechanism by which the genetic variants impart immunity or renal dysfunction remains to be clarified. In this study, using gene expression datasets as a quantitative readout of peripheral blood mononuclear cell (PBMC)- and kidney-based molecular phenotypes, we analyzed the similarities and differences in the patterns of gene expression perturbations associated with the systematic and kidney immunity in IgAN and LN. Original gene expression datasets for PBMC, glomerulus, and tubule from IgAN and systemic lupus erythematosus (SLE) patients as well as corresponding controls were obtained from the Gene Expression Omnibus (GEO) database. The similarities and differences in the expression patterns were detected according to gene differential expression. Weighted gene co-expression network analysis (WGCNA) was used to cluster and screen the co-expressed gene modules. The disease correlations were then identified by cell-specific and functional enrichment analyses. By combining these results with the genotype data, we identified the differentially expressed genes causatively associated with the disease. There was a significant positive correlation with the kidney expression profile, but no significant correlation with PBMC. Three co-expression gene modules were screened by WGCNA and enrichment analysis. Among them, blue module was enriched for glomerulus and podocyte ( P < 0.05) and positively correlated with both diseases ( P < 0.05), mainly via immune regulatory pathways. Pink module and purple module were enriched for tubular epithelium and correlated with both diseases ( P < 0.05) through predominant cell death and extracellular vesicle pathways, respectively. In genome-wide association study (GWAS) enrichment analysis, blue module was identified as the high-risk gene module that distinguishes LN from SLE and contains PSMB8 and PSMB9 , the susceptibility genes for IgAN. In conclusion, IgAN and LN showed different systematic immunity but similarly abnormal immunity in kidney. Immunological pathways may be involved in the glomerulopathy and cell death together with the extracellular vesicle pathway, which may be involved in the tubular injury in both diseases. Blue module may cover the causal susceptibility gene for IgAN and LN.