Porcine circovirus type 4 (PCV4) is an emerging etiological agent which was first detected in 2019. The nucleolar localization signal (NoLS) of PCV4 Cap protein and its binding host cellular proteins are still not elucidated. In the present study, we discovered a distinct novel NoLS of PCV4 Cap, which bound to the nucleolar phosphoprotein nucleophosmin-1 (NPM1). The NoLS of PCV4 Cap and serine-48 residue at the N-terminal oligomerization domain of NPM1 were necessary for PCV4 Cap/NPM1 interaction. Furthermore, the charge property of serine residue at position 48 of the NPM1 was crucial for its oligomerization and interaction with PCV4 Cap. In summary, our findings show for the first time that the PCV4 Cap NoLS and the NPM1 oligomerization determine the interaction of Cap/NPM1.
Our aim was to analyze and interpret the behavioral reactions of Chinese laopiao (drifting elderly), that is, people aged 50 years and over who have migrated from rural to urban areas to rejoin adult sons/daughters, and who face negative experiences as a result of this move. We employed grounded theory and interviewed 31 migrants living in Shanghai. Most participants showed an obvious bias when facing negative experiences: they prioritized the future over the present, were accepting of present losses, and expressed risk aversion regarding future gains. Regarding the present, participants expressed a relatively weak desire for anticipatory gains and a positive attitude regarding risks. In contrast, regarding the future, they expressed a strong desire for anticipatory gains and a strong desire to delay related risks. Therefore, for the sake of future gains and to avoid greater risk, they continued to live as drifting elderly even when they were currently facing some seemingly negative social consequences.
Disaster-preventive migration (DPM) is an important method for disaster risk management, but migration itself entails a potential social stability risk. This study took County D in Yunnan Province, one of the counties most severely threatened by geological disasters in China, as an example to construct an indicator system of social stability risk factors for disaster-preventive migration based on a literature survey and in-depth interviews. The system consists of 5 first-level risk factors and 14 s-level risk factors. The social stability risk of DPM in County D was assessed using a fuzzy comprehensive evaluation method based on experts’ weights. The results showed that the overall social stability risk level of disaster-preventive migration in County D is ‘high’. In terms of importance, the five first-level risk factors were ranked as follows: public opinion risk > compensation risk > livelihood recovery risk > cultural risk > geological disaster risk. Among the risk factors, the level of public opinion risk and compensation risk appeared to be high, whereas that of livelihood recovery risk, cultural risk and geological disaster risk resulted to be medium. To our knowledge, this paper is the first research to evaluate the social stability risk of DPM; it not only enriches the theories of social stability risk assessment, but also has important guiding significance for people relocation and resettlement in Chinese ethnic minority areas.
Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.
Magnetic FeNi@Ni nanocables were prepared as a superior recyclable catalyst towards the hydrogenation reduction of p-nitrophenol to p-aminophenol through a two-step tunable assembly process in a solvothermal system. The proposed fabrication mechanism was verified through characterization by SEM, TEM, XRD, XPS, and UV-Vis. The as-prepared FeNi@Ni nanocomposites are core–shell-structured nanocables with Ni nanoparticles (NPs) attached on FeNi nanorods (NRs) surface loosely. The catalytic reactivity monitored by means of a UV-vis dynamic process shows FeNi@Ni nanocables can catalyse the transformation of p-nitrophenol to p-aminophenol completely under an ambient atmosphere at room temperature, and enable the catalysis to be more efficient than its counterparts FeNi NRs and Ni NPs due to the interfacial synergistic effect. Additionally, the resultant hierarchical metal–alloy nanocomposites possess ferromagnetic behaviour, and can be easily separated and recycled by an external magnet field for application.
Abstract Objectives This study aims to evaluate the ability of tantalum-coated titanium to improve human gingival fibroblasts’ adhesion, viability, proliferation, migration performance, and the potential molecular mechanisms. Materials and methods Titanium plates were divided into two groups: (1) no coating (Ti, control), (2) Tantalum-coated titanium (Ta-coated Ti). All samples were characterized by scanning electronic microscopy, surface roughness, and hydrophilicity. Fibroblasts’ performance were analyzed by attached cell number at 1 h, 4 h, and 24 h, morphology at 1 h and 4 h, viability at 1 day, 3 days, 5 days, and 7 days, recovery after wounding at 6 h, 12 h, and 24 h. RT-PCR, western blot were applied to detect attachment-related genes’ expression and protein synthesis at 4 h and 24 h. Student’s t test was used for statistical analysis. Results Tantalum-coated titanium demonstrates a layer of homogeneously distributed nano-grains with mean diameter of 25.98 (± 14.75) nm. It was found that after tantalum deposition, human gingival fibroblasts (HGFs) adhesion, viability, proliferation, and migration were promoted in comparison to the control group. An upregulated level of Integrin β1 and FAK signaling was also detected, which might be the underlying mechanism. Conclusion In the present study, adhesion, viability, proliferation, migration of human gingival fibroblasts are promoted on tantalum-coated titanium, upregulated integrin β1 and FAK might contribute to its superior performance, indicating tantalum coating can be applied in transmucosal part of dental implant. Clinical significance Tantalum deposition on titanium surfaces can promote human gingival fibroblast adhesion, accordingly forming a well-organized soft tissue sealing and may contribute to a successful osseointegration.