Abstract Our recent study has revealed that the myocardin-related transcription factor-A (MRTF-A) is involved in the apoptosis of cortical neurons induced by ischemia/reperfusion (I/R). Histone deacetylase 5 (HDAC5) and histone acetyltransferase p300 (P300) are two well-known regulators for transcription factors; however, their roles in MRTF-A-related effect on neuronal injuries during I/R are still unclear. In this study, in a model rat cerebral I/R injury via middle cerebral artery occlusion and reperfusion, we found that the expression and activity of HDAC5 was upregulated, whereas p300 and MRTF-A were downregulated both in expression and activity during I/R. Their expression changes and the interaction of the MRTF-A with HDAC5 or p300 were further verified by double immunofluorescence and co-immunoprecipitation. In cultured neuronal apoptosis model induced by H 2 O 2 , MRTF-A exhibited an anti-apoptotic effect by enhancing the transcription of Bcl-2 and Mcl-1 via CArG box binding. MRTF-A-induced anti-apoptotic effect was effectively inhibited by HDAC5, but was significantly enhanced by p300. The results suggest that both HDAC5 and p300 are involved in MRTF-A-mediated effect on neuronal apoptosis during ischemia/reperfusion injury, but with opposite effects.
Abstract Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68 ΔC ) or N-terminal (Sam68 ΔN ) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68 ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes.
Platelets are derived from megakaryocytes and play an important role in blood coagulation. By using high throughput sequencing, we have found that the long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) is abundant in platelets (GEO ID: 200097348). However, little is known about its role in regulating megakaryocyte differentiation and platelet activity. This study aims to clarify the effect of NEAT1 on MEG-01 differentiation and platelet-like particle (PLP) activity. NEAT1 in MEG-01 cells was knocked down by siRNA transfection. The adhesion of MEG-01 and PLP to collagen-coated coverslips was observed under a fluorescence microscope. Flow cytometry was used to investigate cell apoptosis, cell cycle, the levels of D41/CD42b on MEG-01 cells and CD62P on PLPs. Quantitative real-time polymerase chain reaction was used to detect NEAT1 and IL-8 expression levels. Western blot was used to measure the protein levels of Bcl-2, Bax, cleaved caspase-3, and IL-8. RNA-binding protein immunoprecipitation was used to detect the interaction of NEAT1 and splicing factor proline/glutamine-rich (SFPQ). Results showed that NEAT1 knockdown decreased the adhesion ability of thrombin-stimulated MEG-01 and PLP. The expression of CD62P on PLPs and CD41/CD42b on MEG-01 cells was inhibited by NEAT1 knockdown. In addition, NEAT1 knockdown inhibited cell apoptosis with increased Bcl2/Bax ratio and decreased cleaved caspase-3, and reduced the percentage of cells in the G0/G1 phase. Meanwhile, NEAT1 knockdown inhibited the expression of IL-8. A strong interaction of NEAT1 and SFPQ, a transcriptional repressor of IL-8, was identified. NEAT1 knockdown reduced the interaction between SFPQ and NEAT1.The results suggest that lncRNA NEAT1 knockdown decreases MEG-01 differentiation, PLP activity, and IL-8 level. The results also indicate that the regulation of NEAT1 on IL-8 may be realized via a direct interaction between NEAT1 and SFPQ.
Angiotensin II (ANG II) promotes neointimal growth in the balloon-injured rat carotid artery. However, the mechanism by which ANG II stimulates neointimal growth during vascular injury is not known. In cultured vascular smooth muscle cells, ANG II activates Akt through cytosolic phospholipase A2 (cPLA2)-dependent phospholipase D2 (PLD2). This study was conducted to determine whether ANG II-induced neointimal thickening is mediated via cPLA2- and PLD2-activated Akt in balloon-injured rat carotid arteries. ANG II-stimulated neointimal growth was inhibited by exposure of the injured carotid arteries to an adenovirus containing a dominant negative Akt mutant (intima-to-media ratio from 3.01 +/- 0.31 to 1.44 +/- 0.14, P < 0.01) or a retrovirus containing cPLA2 small interfering RNA (siRNA; intima-to-media ratio from 3.01 +/- 0.31 to 1.16 +/- 0.36, P < 0.001) or PLD2 siRNA (intima-to-media ratio from 3.01 +/- 0.31 to 1.33 +/- 0.11, P < 0.001). The effect of cPLA2 and PLD2 siRNA to reduce the ANG II-induced increase in neointimal thickening was associated with reduced expression of cPLA2 and PLD2 as determined by immunohistochemical analysis in injured carotid arteries. Western blot analysis showed that Akt phosphorylation that was increased by ANG II was inhibited in injured carotid arteries 2 days after exposure to cPLA2 or PLD2 siRNA or in injured arteries isolated after exposure to these agents for 30 min and then placed in tissue culture media for 24 h in the presence of these agents. These data suggest that the ANG II-induced neointimal growth is mediated by the activation of Akt through a mechanism dependent on cPLA2 and PLD2 activation in balloon-injured rat carotid arteries.
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs that negatively regulate gene expression via degradation or translational inhibition of their target mRNAs. Recent studies have identified that miR-145 is the most abundant miRNA in normal arteries and vascular smooth muscle cells (VSMCs), and its expression is significantly downregulated in dediffer-entiated VSMCs and atherosclerotic arteries. miR-145 plays a critical role in modulating VSMC phenotype. Because phenotypic modulation of VSMCs is an initial cellular event in the development of atherosclerosis, miRNAs, and miR-145 in particular, may represent new therapeutic targets for atherosclerosis.
Monocyte-to-M0/M1 macrophage differentiation with unclear molecular mechanisms is a pivotal cellular event in many cardiovascular diseases including atherosclerosis. Long non-coding RNAs (lncRNAs) are a group of protein expression regulators; however, the roles of monocyte-lncRNAs in macrophage differentiation and its related vascular diseases are still unclear. The study aims to investigate whether the novel leukocyte-specific lncRNA Morrbid could regulate macrophage differentiation and atherogenesis. We identified that Morrbid was increased in monocytes and arterial walls from atherosclerotic mouse and from patients with atherosclerosis. In cultured monocytes, Morrbid expression was markedly increased during monocyte to M0 macrophage differentiation with an additional increase during M0 macrophage-to-M1 macrophage differentiation. The differentiation stimuli-induced monocyte-macrophage differentiation and the macrophage activity were inhibited by Morrbid knockdown. Moreover, overexpression of Morrbid alone was sufficient to elicit the monocyte-macrophage differentiation. The role of Morrbid in monocyte-macrophage differentiation was also identified in vivo in atherosclerotic mice and was verified in Morrbid knockout mice. We identified that PI3-kinase/Akt was involved in the up-regulation of Morrbid expression, whereas s100a10 was involved in Morrbid-mediated effect on macrophage differentiation. To provide a proof of concept of Morrbid in pathogenesis of monocyte/macrophage-related vascular disease, we applied an acute atherosclerosis model in mice. The results revealed that overexpression of Morrbid enhanced but monocyte/macrophage-specific Morrbid knockout inhibited the monocytes/macrophages recruitment and atherosclerotic lesion formation in mice. The results suggest that Morrbid is a novel biomarker and a modulator of monocyte-macrophage phenotypes, which is involved in atherogenesis.
Abstract Background Radiation-induced thrombocytopenia (RIT) poses a significant risk to cancer patients undergoing radiotherapy, leading to hemorrhage and mortality. Unfortunately, effective treatment options for RIT are currently limited. Methods We assessed the effectiveness of Fructus Psoraleae, a popular traditional Chinese medicine (TCM) known for its hemostatic properties, in treating thrombocytopenia through the application of network pharmacology. Utilizing a naive Bayes algorithm, we built a drug screening model to determine the effective compounds present in Fructus Psoraleae. Giemsa staining and flow cytometry were employed to evaluate the effects of the potential active compound, Bavachinin A, on the differentiation of megakaryocytes (MK) in K562 and Meg-01 cells. Furthermore, we conducted experiments using RIT mice and c-MPL knock-out (c-MPL −/− ) mice to assess the therapeutic efficacy of Bavachinin A in mitigating thrombocytopenia. Additionally, Tg (cd41:eGFP) transgenic zebrafish were utilized to investigate the impact of Bavachinin A on thrombopoiesis. To elucidate the underlying molecular mechanisms of Bavachinin A against thrombocytopenia, we employed RNA-sequencing (RNA-seq), network pharmacology analysis, molecular docking simulations, molecular dynamics simulations, drug affinity responsive target stability assay (DARTS), and biolayer interferometry (BLI). Results Bavachinin A emerged as the most promising candidate from our investigations. In vitro experiments demonstrated the significant ability of Bavachinin A to induce MK differentiation. In vivo experiments revealed that Bavachinin A had the capacity to augment platelet levels and improve coagulation in RIT mice, facilitated megakaryopoiesis and platelet level in c-MPL −/− mice, and accelerated thrombopoiesis in zebrafish. Furthermore, RNA-seq analysis revealed that the core signaling pathway regulated by Bavachinin A was PI3K/Akt. Molecular docking simulation, molecular dynamics simulation, DARTS and BLI demonstrated that Bavachinin A directly bound to FLT3. Notably, blocking FLT3 or PI3K/Akt hindered Bavachinin A-induced MK differentiation, but repressing TPO/c-MPL signaling pathway had no significant effect. Conclusions Our findings suggest that Bavachinin A promotes MK differentiation and thrombopoiesis by binding directly to FLT3 and activating the PI3K/Akt signaling. Importantly, this effect is not contingent upon the conventional TPO/c-MPL signaling pathway. Our study highlights translational potential of Bavachinin A as a novel therapeutic agent for thrombocytopenia, and presents a novel strategy for drug discovery using multimodal and multiscale methods.