The Protocol for treatment of central nervous system injury was evaluated with consideration given to the goal of preserving neuronal integrity as well as future functional restoration. A case involving injury to the spinal cord is presented. There was associated cervical spinal canal stenosis and the patient was treated with high-dose methylprednisolone as well as an expansive laminoplasty. This was performed in an effort to prevent secondary spinal cord damage during the acute and subacute stages.Functinal electrical stimulation (FES) was performed for the neurologic (motor) deficits of the right upper extremity, in the chronic stage. Following methylprednisolone therapy, the severe tetraparesis showed significant recovery with subsequent further improvement being achieved after the laminoplasty. Persistent motor deficits of the hand were restored by utilizing FES, after 5 weeks of exercises. It was concluded that the results of these procedures were very encouraging. Further trials should be performed. Both basic science and clinical studies will be required to further efforts in achieving effective functional restoration following injury to the brain and/or spinal cord.
We aimed to identify whether there is any correlation between chromosomal/genetic changes, nuclear morphology and the histological grade of urothelial carcinomas of the urinary bladder. Morphometry and multicolour fluorescence in situ hybridisation (FISH) techniques were applied to 250 cells in five low-grade cases and 350 cells in seven high-grade cases of urothelial carcinoma. Compared with low-grade carcinomas, most high-grade cases showed larger and more variable nuclear size, more frequent polysomy of centromere enumeration probes (CEPs) 3, 7 and 17, and the loss of the 9p21 locus. The number of CEP signals in cells was increased as the nuclear area of the cells became larger. Cells with gains in two or more types of CEP had significantly larger nuclei than cells with normal FISH signal patterns. In conclusion, the present study indicates that there was a correlation between nuclear morphology and chromosomal/genetic changes which were related to histological grading. Thus, we show that differences in the chromosomal/genetic aberrations present in low- and high-grade tumours can affect not only nuclear morphology but also the histopathological and clinical behaviour of urothelial carcinomas.
The honeycomb grouper shows protogynous hermaphroditism. The endocrine mechanisms involved in gonadal restructuring throughout protogynous sex change are largely unknown. In the present study, we investigated changes in the gonadal structures and levels of serum sex steroid hormones during female to male sex change in the honeycomb grouper. On the basis of histological changes, entire process of sex change was assigned into four developmental phases: female, early transition (ET), late transition (LT), and male phase. At the female phase, the oocytes of several developmental stages were observed including gonial germ cells in the periphery of ovigerous lamellae. At the beginning of ET phase, perinucleolar and previtellogenic oocytes began degenerating, followed by proliferation of spermatogonia toward the center of lamella. The LT phase was characterized by further degeneration of oocytes and rapid proliferation of spermatogenic germ cells throughout the gonad. At the male phase, no ovarian cells were observed and testis had germ cells undergoing active spermatogenesis. Serum levels of estradiol-17β (E2) were high in females in the breeding season, but low in the non-breeding female, transitional and male phase, and those of 11-ketotestosterone (11-KT) and testosterone (T) were low in females and gradually increased in the transitional and male phase. The present results suggest that low serum E2 levels and degeneration of oocytes accompanied by concomitant increase in the 11-KT levels and proliferation of spermatogenic germ cells are probably the events mediating protogynous sex change in the honeycomb grouper.