The analysis on the online finger gesture recognition using multi-channel sEMG signals was explored in this paper. Nine types of gestures were applied to be identified, involving six kinds of numerical finger gestures and three kinds of hand gestures. The time domain parameters were extracted to be the features. And then, the probabilistic neural network was utilized to classify the proposed gestures with the extracted features. The experimental results showed that most of gestures could acquire the acceptable classification performance and a few elaborate gestures were hard to acquire the effective identification.
Radiotherapy to treat brain tumors can potentially harm the central nervous system (CNS). The radiation stimulates a series of immune responses in both the CNS as well as peripheral immune system. To date, studies have mostly focused on the changes occurring in the immune response within the CNS. In this study, we investigated the effect of γ-ray-induced CNS injury on the peripheral immune response using a cell co-culture model and a whole-brain irradiation (WBI) rat model. Nerve cells (SH-SY5Y and U87 MG cells) were γ-ray irradiated, then culture media of the irradiated cells (conditioned media) was used to culture immune cells (THP-1 cells or Jurkat cells). Analyses were performed based on the response of immune cells in conditioned media. Sprague-Dawley rats received WBI at different doses, and were fed for one week to one month postirradiation. Spleen and peripheral blood were then isolated and analyzed. We observed that the number of monocytes in peripheral blood, and the level of NK cells and NKT cells in spleen increased after CNS injury. However, the level of T cells in spleen did not change and the level of B cells in the spleen decreased after γ-ray-induced CNS injury. These findings indicate that CNS injury caused by ionizing radiation induces a series of changes in the peripheral immune system.
Angular accelerometer plays an important role in inertial measurement. In this paper, modeling and simulation of the fluidic system in liquid-circular angular accelerometer is presented. A new train of thought is offered that the fluidic system of angular accelerometer can be equivalent to a rigid system. Based on it, a mass-spring-damper (MSD) model in state space form is established considering the compressibility of the fluid mass in the circular tube. In order to test the proposed model and determine the parameters including the degree of freedom, the stiffness and the damping coefficient, the SimMechanics library of the MATLAB software is selected to simulate. The simulation results indicate that the MSD model shows a good agreement with the previous transient flow model which our group has proved to predict the real fluidic system.
Humans and other animals can quickly respond to unexpected terrains during walking, but little is known about the cortical dynamics in this process. To study the impact of unexpected terrains on brain activity, we allowed rats with blocked vision to walk on a treadmill in a bipedal posture and then walk on an uneven area at a random position on the treadmill belt. Whole brain EEG signals and hind limb kinematics of bipedal-walking rats were recorded. After encountering unexpected terrain, the θ band power of the bilateral M1, the γ band power of the left S1, and the θ to γ band power of the RSP significantly decreased compared with normal walking. Furthermore, when the rats left uneven terrain, the β band power of the bilateral M1 and the α band power of the right M1 decreased, while the γ band power of the left M1 significantly increased compared with normal walking. Compared with the flat terrain, the θ to low β (3-20 Hz) band power of the bilateral S1 increased after the rats contacted the uneven terrain and then decreased in the single- or double- support phase. These results support the hypothesis that unexpected terrains induced changes in cortical activity.