Following the publication of this article, the authors find that they are not able to reproduce certain of the results presented in this paper. Consequently, the authors have decided to retract this paper from the publication. All of the authors agree to this retraction. The authors sincerely regret this decision, and apologize to the Editor and to the readership of the Journal for any inconvenience caused. [The original article was published in Molecular Medicine Reports 16: 3807-3816, 2017; DOI: 10.3892/mmr.2017.7084].
Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. MiRNA let-7 family is known to be involved in the regulation of cell apoptosis. However, the function of let-7 in ox-LDL induced ECs apoptosis and atherosclerosis is still unknown. Here, we show that let-7c expression was markedly up-regulated in ox-LDL induced apoptotic human umbilical cord vein endothelial cells (HUVECs). Let-7c over-expression enhanced apoptosis in ECs whereas inhibition of let-7c could partly alleviate apoptotic cell death mediated by ox-LDL. Searching for how let-7c affected apoptosis, we discovered that antiapoptotic protein Bcl-xl was a direct target of let-7c in ECs. Our data suggest that let-7c contributes to endothelial apoptosis through suppression of Bcl-xl.
CD147 is a member of the immunoglobulin family of receptors. Both clinical studies and basic research have indicated that elevated CD147 expression is correlated with tumor progression. It facilitates cancer invasion and angiogenesis. Targeting CD147 in cancer appears a promising future therapeutic strategy, but requires a better understanding of its mode of action and regulation. This review focuses on the most recent findings that addressing the role of CD147 in tumor angiogenesis and highlight the relational mechanisms. Supporting these findings are evidences that CD147 is an important modulator in tumor angiogenesis, thus, more attractive as a target for anti-tumor treatment.
Pericardial-esophageal fistula is a rare complication after radiofrequency ablation for atrial fibrillation. A 52-year-old man developed pneumopericardium, which was revealed by echocardiogram and computed tomography, after a combined ablation and left atrial appendage occlusion procedure for atrial fibrillation. He was diagnosed with a pericardial-esophageal fistula and underwent surgical pericardial and mediastinal drainage tube placement. However, the patient developed constrictive pericarditis 2 months after the first surgery and subsequently underwent pericardiolysis. A month after the second surgery, the patient's condition was significantly improved and he was allowed home.
RNA polymerase mitochondria (POLRMT) is essential for mitochondrial transcription machinery and other mitochondrial functions. Its expression and potential functions in prostate cancer were explored here. The Cancer Genome Atlas prostate cancer cohort (TCGA PRAD) shows that POLRMT mRNA expression is upregulated in prostate cancer tissues and POLRMT upregulation is correlated with poor patients' survival. POLRMT mRNA and protein levels were upregulated in local prostate cancer tissues and different primary/immortalized prostate cancer cells. Genetic depletion of POLRMT, using viral shRNA or CRISPR/Cas9 gene editing methods, impaired mitochondrial functions in prostate cancer cells, leading to mitochondrial depolarization, oxidative stress, mitochondria complex I inhibition, and ATP depletion. Moreover, POLRMT depletion resulted in robust inhibition of prostate cancer cell viability, proliferation, and migration, and provoked apoptosis. Conversely, prostate cancer cell proliferation, migration, and ATP contents were strengthened following ectopic POLRMT overexpression. In vivo, intratumoral injection of POLRMT shRNA adeno-associated virus impeded prostate cancer xenograft growth in nude mice. POLRMT silencing, oxidative stress, and ATP depletion were detected in POLRMT shRNA-treated prostate cancer xenograft tissues. IMT1 (inhibitor of mitochondrial transcription 1), the first-in-class POLRMT inhibitor, inhibited prostate cancer cell growth in vitro and in vivo. Together, overexpressed POLRMT is an important mitochondrial protein for prostate cancer cell growth, representing a novel and promising diagnostic and therapeutic oncotarget.
The development of atherosclerosis is accompanied by the functional deterioration of plaque cells, which leads to the escalation of endothelial inflammation, abnormal vascular smooth muscle cell phenotype switching and the accumulation of lipid-laden macrophages within vascular walls. Autophagy, a highly conserved homeostatic mechanism, is critical for the delivery of cytoplasmic substrates to lysosomes for degradation. Moderate levels of autophagy prevent atherosclerosis by safeguarding plaque cells against apoptosis, preventing inflammation, and limiting the lipid burden, whereas excessive autophagy exacerbates cell damage and inflammation and thereby accelerates the formation of atherosclerotic plaques. Increasing lines of evidence suggest that long noncoding RNAs can be either beneficial or detrimental to atherosclerosis development by regulating the autophagy level. This review summarizes the research progress related to 1) the significant role of autophagy in atherosclerosis and 2) the effects of the lncRNA-mediated modulation of autophagy on the plaque cell fate, inflammation levels, proliferative capacity, and cholesterol metabolism and subsequently on atherogenesis.