The aim of this study was to explore a novel gene vector for targeting gene therapy. Materials and Methods: We conjugated a peptide ligand (named GA3) for endothelial TEK tyrosine kinase (Tie2) with polyethylenimine (PEI) to construct a GA3-PEI complex and used the vector to transfer reporter and therapeutic gene in vitro and in vivo respectively. Results: The results demonstrated the vehicle was able to transfer reporter genes specifically into lung cancer SPC-A1 cells and SPC-A1 xenografts highly expressing Tie2 and epithelial cells of bronchus, but not in heart, liver, spleen, kidney, lung alveolar and vascular tissues. In the gene therapy study, tumor growth was significantly inhibited in SPC-A1 xenograft-bearing mice treated with GA3-PEI/p53 complexes compared with control groups (p<0.05). Conclusion: Our results indicated that GA3-PEI is an efficient gene delivery system targeting Tie2. Current approaches such as surgery, chemotherapy and
Hepatocellular carcinoma (HCC) is one of the most lethal cancer worldwide, characterized with high heterogeneity and inclination to metastasize. Emerging evidence suggests that BAP31 gets involved in cancer progression with different kinds. It still remains unknown whether and how BAP31 plays a role in HCC metastasis. Epithelial–mesenchymal transition (EMT) has been a common feature in tumor micro-environment, whose inducer TGF-β increased BAP31 expression in this research. Elevated expression of BAP31 was positively correlated with tumor size, vascular invasion and poor prognosis in human HCC. Ectopic expression of BAP31 promoted cell migration and invasion while BAP31 knockdown markedly attenuated metastatic potential in HCC cells and mice orthotopic xenografts. BAP31 induced EMT process, and enhanced the expression level of EMT-related factor Snail and decreased contents and membrane distribution of E-cadherin. BAP31 also activated AKT/β-catenin pathway, which mediated its promotional effects on HCC metastasis. AKT inhibitor further counteracted the activated AKT/β-catenin/Snail upon BAP31 over-expression. Moreover, silencing Snail in BAP31-overexpressed cells impaired enhanced migratory and invasive abilities of HCC cells. In HCC tissues, BAP31 expression was positively associated with Snail. In conclusion, BAP31 promotes HCC metastasis by activating AKT/β-catenin/Snail pathway. Thus, our study implicates BAP31 as potential prognostic biomarker, and provides valuable information for HCC prognosis and treatment.
Heat shock protein 27 (Hsp27) is an ATP-independent molecular chaperone and confers survival advantages and resistance to cancer cells under stress conditions. The effects and molecular mechanisms of Hsp27 in HCC invasion and metastasis are still unclear. In this study, hepatocellular carcinoma (HCC) tissue array (n = 167) was used to investigate the expression and prognostic relevance of Hsp27 in HCC patients. HCC patients with high expression of Hsp27 exhibited poor prognosis. Overexpression of Hsp27 led to the forced invasion of HCC cells, whereas silencing Hsp27 attenuated invasion and metastasis of HCC cells in vitro and in vivo. We revealed that Hsp27 activated Akt signaling, which in turn promoted MMP2 and ITGA7 expression and HCC metastasis. We further observed that targeting Hsp27 using OGX-427 obviously suppressed HCC metastasis in two metastatic models. These findings indicate that Hsp27 is a useful predictive factor for prognosis of HCC and it facilitates HCC metastasis through Akt signaling. Targeting Hsp27 with OGX-427 may represent an attractive therapeutic option for suppressing HCC metastasis.
Abstract Circular RNAs (circRNAs) are identified as vital regulators in a variety of cancers. However, the role of circRNA in lung squamous cell carcinoma (LUSC) remains largely unknown. Herein, we explore the expression profiles of circRNA and mRNA in 5 paired samples of LUSC. By analyzing the co-expression network of differentially expressed circRNAs and dysregulated mRNAs, we identify that a cell cycle-related circRNA, circTP63 , is upregulated in LUSC tissues and its upregulation is correlated with larger tumor size and higher TNM stage in LUSC patients. Elevated circTP63 promotes cell proliferation both in vitro and in vivo. Mechanistically, circTP63 shares miRNA response elements with FOXM1. circTP63 competitively binds to miR-873-3p and prevents miR-873-3p to decrease the level of FOXM1, which upregulates CENPA and CENPB, and finally facilitates cell cycle progression.
Epidermal growth factor receptor (ErbB1, EGFR) is overexpressed in a variety of human cancer cells. It has been considered as a rational target for drug delivery. To identify novel ligands with specific binding capabilities to EGFR, we screened a phage display peptide library and found an enriched phage clone encoding the amino acid sequence YHWYGYTPQNVI (designated as GE11). Competitive binding assay and Scatchard analysis revealed that GE11 peptide bound specifically and efficiently to EGFR with a dissociation constant of approximately 22 nM, but with much lower mitogenic activity than with EGF. We showed that the peptides were internalized preferentially into EGFR highly expressing cells, and they accumulated in EGFR overexpressing tumor xenografts after i.v. delivery in vivo. In gene delivery studies, GE11-conjugated polyethylenimine (PEI) vectors were less mitogenic, but still quite efficient at transfecting genes into EGFR highly expressing cells and tumor xenografts. Taken together, GE11 is a potentially safe and efficient targeting moiety for selective drug delivery systems mediated through EGFR.
Cisplatin resistance is a major problem affecting ovarian carcinoma treatment. NF-E2-related factor 2 (Nrf2), a nuclear transcription factor, plays an important role in chemotherapy resistance. However, the underlying mechanism by which Nrf2 mediates cisplatin chemoresistance is unclear.The human ovarian carcinoma cell line, A2780, and its cisplatin-resistant variant, A2780cp were cultivated. Cell viability was determined with WST-8 assay. Western blot was applied to detect the expression of Nrf2, Nrf2 target genes, and autophagy-related proteins. RNA interference was used to knock down target genes. Annexin V and propidium iodide (PI) staining was utilized to quantify apoptosis. The ultrastructural analysis of autophagosomes was performed by transmission electron microscopy (TEM).Nrf2 and its targeting genes, NQO1 and HO-1, are overexpressed in A2780cp cells compared with A2780 cells. Knocking down Nrf2 sensitized A2780cp cells to cisplatin treatment and decreased autophagy-related genes, Atg3, Atg6, Atg12 and p62 in both mRNA and protein levels. Furthermore, we demonstrated that in both cell lines cisplatin could induce the formation of autophagosomes and upregulate the expression of autophagy-related genes Atg3, Atg6 and Atg12. Treatment with an autophagy inhibitor, 3-Methyladenine (3-MA), or beclin 1 siRNA enhanced cisplatin-induced cell death in A2780cp cells, suggesting that inhibition of autophagy renders resistant cells to be more sensitive to cisplatin. Taken together, Nrf2 signaling may regulate cisplatin resistance by activating autophagy.Nrf2-activated autophagy may function as a novel mechanism causing cisplatin-resistance.
Angiopoietin-like protein 4 (ANGPTL4) plays complex and often contradictory roles in vascular biology and tumor metastasis, but little is known about its function in hepatocellular carcinoma (HCC) metastasis. In the present study, we showed that hypoxia-inducible factor 1α (HIF-1α) directly up-regulates ANGPTL4, and its stableness positively correlates with ANGPTL4 expression in HCC tissue. Overexpression of ANGPTL4 significantly increased HCC cell transendothelial migration in vitro and intrahepatic and distal pulmonary metastasis in vivo, whereas silencing ANGPTL4 expression or treatment with a neutralizing antibody specific for ANGPTL4 protein resulted in a reduced transendothelial migration. We also found that serum ANGPTL4 is higher in HCC patients, compared to healthy control, and correlates with intrahepatic metastasis and histological grade. Further, secreted ANGPTL4 promotes transendothelial migration and metastasis of HCC cells in vitro and in vivo through the up-regulation of vascular cell adhesion molecule-1 (VCAM-1) of human umbilical vein endothelial cells and the activation of the VCAM-1/integrin β1 axis. Conclusion: ANGPTL4 is a target gene of HIF-1α and acts as an important regulator in the metastasis of HCC. Serum ANGPTL4 correlates with tumor progression and metastasis and might be used to indicate prognosis in HCC patients. (HEPATOLOGY 2011 54:910–919;)
Abstract Extracellular pH is usually low in solid tumors, in contrast to the approximately neutral intracellular pH. V-ATPase, which overly functions in some cancers with metastatic potential, plays an important role in maintaining neutral cytosolic pH, very acidic luminal pH, and acidic extracellular pH. ATP6L, the 16 kDa subunit of proton pump V-ATPase, can provide proton hydrophilic transmembrane path. In this study, ATP6L in a human hepatocellular carcinoma cell line with highly metastatic potential (HCCLM3) was knocked down using DNA vector–based small interfering RNA (siRNA) to suppress the metastasis. The expression of ATP6L in stable siRNA transfectants, designated as si-HCCLM3 cells, was inhibited by ∼60%. The proton secretion and the intracellular pH recovery from NH4Cl-prepulsed acidification were inhibited in si-HCCLM3 cells. The invasion of the si-HCCLM3 cells was suppressed in vitro; simultaneously, the expressions of matrix metalloproteinase-2 and gelatinase activity were reduced. In vivo, at 35th day after implantation of the si-HCCLM3 xenografts into the livers in BalB/c (nu+/nu+) mice, the size of liver tumor tissues was dramatically smaller in siRNA group than in the controlled group. The most impressing effect of ATP6L siRNA is its striking reduction of the metastatic potential of HCCLM3 cells. In control, all eight mice had the intrahepatic metastasis and six of eight the pulmonary metastasis, whereas in ATP6L siRNA-treated group, three of eight had the intrahepatic metastasis and only one of eight the pulmonary metastasis. The results suggest that the inhibition of V-ATPase function via knockdown of ATP6L expression using RNA interfering technology can effectively retard the cancer growth and suppress the cancer metastasis by the decrease of proton extrusion and the down-regulation of gelatinase activity.
Hepatocellular carcinoma (HCC) is a common malignant tumor in the world, especially in China. As a member of the inhibitor of differentiation (Id) family, Id4 has been reported to function in many cancer types, but relatively little is known about its role in HCC. The purpose of this study was to investigate the potential relationship between Id4 and HCC development and the underlying mechanism involving the function of Id4 in HCC.We used quantitative real-time polymerase chain reaction and Western blotting to examine the RNA and protein expression of Id4. In addition, we used Cell Counting Kit-8 assay and colony formation assay to identify the function of Id4 in the regulation of cell proliferation in human HCC.We found that the expression of Id4 protein was up-regulated in tumor tissues from HCC patients. Overexpression of Id4 promoted HCC cell proliferation, clonogenicity in vitro, and tumorigenicity in vivo. Id4 knockdown experiments showed that silencing Id4 blocked the proliferation and colony formation ability of HCC cells in vitro. Furthermore, overexpression of CCAAT/enhancer-binding protein β inhibited Id4 expression in HCC cells.Id4 may be developed as a potent therapeutic agent for the treatment of HCC, but more details about the underlying mechanisms of action are needed.