The paradigm of individualized drug therapy based on genetics is an ideal that is now potentially possible. However, translation of pharmacogenomics into practice has encountered barriers such as limited availability and the high cost of genetic testing, the delays involved, disagreements about interpretation of results, and even lack of understanding about pharmacogenomics in general. We describe our institutional pharmacogenomics-implementation project, "The 1200 Patients Project," a model designed to overcome these barriers and facilitate the availability of pharmacogenomic information for personalized prescribing.
Objective We evaluated the prevalence of pathogenic repeat expansions in replication factor C subunit 1 (RFC1) and disabled adaptor protein 1 (DAB1) in an undiagnosed ataxia cohort from North America. Methods A cohort of 596 predominantly adult-onset patients with undiagnosed familial or sporadic cerebellar ataxia was evaluated at a tertiary referral ataxia center and excluded for common genetic causes of cerebellar ataxia. Patients were then screened for the presence of pathogenic repeat expansions in RFC1 (AAGGG) and DAB1 (ATTTC) using fluorescent repeat-primed PCR (RP-PCR). Two additional undiagnosed ataxia cohorts from different centers, totaling 302 and 13 patients, respectively, were subsequently screened for RFC1, resulting in a combined 911 subjects tested. Results In the initial cohort, 41 samples were identified with 1 expanded allele in the RFC1 gene (6.9%), and 9 had 2 expanded alleles (1.5%). For the additional cohorts, we found 20 heterozygous samples (6.6%) and 17 biallelic samples (5.6%) in the larger cohort and 1 heterozygous sample (7.7%) and 3 biallelic samples (23%) in the second. In total, 29 patients were identified with biallelic repeat expansions in RFC1 (3.2%). Of these 29 patients, 8 (28%) had a clinical diagnosis of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), 14 had cerebellar ataxia with neuropathy (48%), 4 had pure cerebellar ataxia (14%), and 3 had spinocerebellar ataxia (10%). No patients were identified with expansions in the DAB1 gene (spinocerebellar ataxia type 37). Conclusions In a large undiagnosed ataxia cohort from North America, biallelic pathogenic repeat expansion in RFC1 was observed in 3.2%. Testing should be strongly considered in patients with ataxia, especially those with CANVAS or neuropathy.
X-linked myotubular myopathy (XLMTM) is a rare neuromuscular condition that presents with neonatal hypotonia and weakness and is associated with severe morbidities (including wheelchair, feeding tube, and ventilator dependence) and early death.1 It is defined by muscle biopsy features, including central nuclei, abnormal oxidative stain distribution, and type I fiber hypotrophy.2 Mutations in myotubularin ( MTM1 ) account for all genetically solved cases of XLMTM, but have not been discovered in all individuals with characteristic clinical and biopsy features.3 Of note, there are some forms of autosomal centronuclear myopathy that can resemble XLMTM, such as those associated with mutations in BIN1 , DNM2 , RYR1 , and SPEG , although rarely are such cases a complete phenocopy of XLMTM.4 In this study, we present a case that illustrates the importance of considering noncoding mutations as a cause of XLMTM and illustrate the utility of RNA analysis in individuals with a phenotype suggestive of a particular genetic diagnosis. Acknowledgment: The authors thank Etsuko Tsuchiya for assistance for REB and Valerion Therapeutics for support of longitudinal natural history study.
Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT.