Objective To investigate the relationship between hematoma ventricle distance (HVD) and clinical outcome in patients with intracerebral hemorrhage (ICH). Methods We prospectively enrolled consecutive patients with ICH in a tertiary academic hospital between July 2011 and April 2018. We retrospectively reviewed images for all patients receiving a computed tomography (CT) within 6 h after onset of symptoms and at least one follow-up CT scan within 36 h. The minimum distance of hematoma border to nearest ventricle was measured as HVD. Youden index was used to evaluate the cutoff of HVD predicting functional outcome. Logistic regression model was used to assess the HVD data and clinical poor outcome (modified Rankin Scale 4–6) at 90 days. Results A total of 325 patients were included in our final analysis. The median HVD was 2.4 mm (interquartile range, 0–5.7 mm), and 119 (36.6%) patients had poor functional outcome at 3 months. After adjusting for age, admission Glasgow coma scale, intraventricular hemorrhage, baseline ICH volume, admission systolic blood pressure, blood glucose, hematoma expansion, withdrawal of care, and hypertension, HVD ≤ 2.5 mm was associated with increased odds of clinical poor outcome [odd ratio, 3.59, (95%CI = 1.72–7.50); p = 0.001] in multivariable logistic regression analysis. Conclusion Hematoma ventricle distance allows physicians to quickly select and stratify patients in clinical trials and thereby serve as a novel and useful addition to predict ICH prognosis.
Glioma is the most common malignant tumor in adult brain characteristic with poor prognosis and low survival rate. Despite the application of advanced surgery, chemotherapy, and radiotherapy, the patients with glioma suffer poor treatment effects due to the complex molecular mechanisms of pathological process. In this paper, we conducted the experiments to prove the critical roles TET1 played in glioma and explored the downstream targets of TET1 in order to provide a novel theoretical basis for clinical glioma therapy. RT-qPCR was adopted to detect the RNA level of TET1 and β-catenin; Western blot was taken to determine the expression of proteins. CCK8 assay was used to detect the proliferation of glioma cells. Flow cytometry was used to test cell apoptosis and distribution of cell cycle. To detect the migration and invasion of glioma cells, wound healing assay and Transwell were performed. It was found that downregulation of TET1 could promote the proliferation migration and invasion of glioma cells and the concomitant upregulation of β-catenin, and its downstream targets like cyclinD1 and c-myc were observed. The further rescue experiments were performed, wherein downregulation of β-catenin markedly decreases glioma cell proliferation in vitro and in vivo. This study confirmed the tumor suppressive function of TET1 and illustrated the underlying molecular mechanisms regulated by TET1 in glioma.
Bcl2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock protein (Hsp) 70, regulates various physiological and pathological processes. However, its role in human medulloblastoma has not been clarified. First of all, the expression of BAG3 was examined in formalin-fixed, paraffin-embedded specimens by immunohistochemical staining. And then, the prognostic role of BAG3 was analyzed in 51 medulloblastoma samples. Finally, the roles of BAG3 in the proliferation, migration, and invasion of Daoy medulloblastoma cell were investigated using a specific short hairpin RNA (shRNA). The expression of BAG3 in medulloblastoma tissues was higher than nontumorous samples. Furthermore, BAG3 overexpression significantly correlated with poor prognosis of patients with medulloblastoma. The overall survival and tumor-free survival in patients with BAG3 low expression were higher than high expression. Univariate and multivariate analysis showed that BAG3 overexpression was an independent prognostic marker for medulloblastoma. After the BAG3 knockdown, the Daoy cells exhibited decreased the ability to proliferate and form neurosphere. The preliminary mechanism study showed that overexpression of BAG3 might facilitate the cell cycle transition from G1 to S phase by modulating the cyclin-dependent kinase 2 (CDK2) and cyclin E expression. Additionally, we found that BAG3 might enhance the medulloblastoma cell migratory and invasive ability. In summary, BAG3 overexpression may regulate the survival and invasive properties of medulloblastoma and may serve as a potential therapy target for medulloblastoma.
Air pollution has been classified as Group 1 carcinogenic to humans, but the underlying tumorigenesis remains unclear. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China attributed to severe air pollution generated by combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis of air pollution. Here we analyzed the somatic mutations of 164 non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used. Whole genome sequencing revealed a mean of 289 somatic exonic mutations per tumor and the frequent C:G → A:T nucleotide substitutions in Xuanwei NSCLCs. Exome sequencing of 2010 genes showed that Xuanwei and CR NSCLCs had a mean of 68 and 22 mutated genes per tumor, respectively (p < 0.0001). We found 167 genes (including TP53, RYR2, KRAS, CACNA1E) which had significantly higher mutation frequencies in Xuanwei than CR patients, and mutations in most genes in Xuanwei NSCLCs differed from those in CR cases. The mutation rates of 70 genes (e.g., RYR2, MYH3, GPR144, CACNA1E) were associated with patients' lifetime benzo(a)pyrene exposure. This study uncovers the mutation spectrum of air pollution-related lung cancers, and provides evidence for pollution exposure-genomic mutation relationship at a large scale.
Cancer Biotherapy and Radiopharmaceuticals (CBR) officially retracts the article entitled, "PHOX2B Is Associated with Neuroblastoma Cell Differentiation," by Liqun Yang, Xiao-Xue Ke, Fan Xuan, Juan Tan, Jianbing Hou, Mei Wang, Hongjuan Cui, and Yundong Zhang (Cancer Biother Radiopharm 2016;31(2):44–51; doi: 10.1089/cbr.2015.1952). Readers are advised that the CBR editorial office received a request via email from the first author, Dr. Liqun Yang, to replace Figure 3, indicating, "This article contains some errors in figure 3. In figure 3A (RA-7d) and figure 3C, we mixed up images from different groups when we prepared the figure. Unfortunately, these mistakes were not corrected when we submitted the manuscript." This request came after the appearance of a comment posted to the PubPeer platform.1 The publisher of the journal made several attempts to contact the authors' institutions to inquire about the veracity of the study and the claimed error, and though a reply was eventually received, it did not appear to be official institutional documentation and was not signed by an institutional official's name but rather only by the institutional name, nor did it provide a comprehensive defensible explanation, rendering it unacceptable (see Fig. R1). The Publisher responded to all authors and to the sender of the "declaration" by stating that the document was not admissible and that the article would be officially retracted. No further response or rebuttal was received. FIG. R1. Insufficient declaration letter received by Editor and publisher. Cancer Biotherapy & Radiopharmaceuticals is committed to upholding the rigorous standards of scientific publishing and the veracity of the literature. Reference 1. Actinopolyspora biskrensis.https://pubpeer.com/publications/C4F159C77D012DDDB38D6B930B12AA?utm_source=Chrome&utm_medium=BrowserExtension&utm_campaign=Chrome
Five bergamotane sesquiterpenoid derivatives, brasilterpenes A–E (1–5), bearing an unreported spiral 6/4/5 tricyclic ring system, were isolated from the deep sea-derived ascomycete fungus Paraconiothyrium brasiliense HDN15-135. Their structures, including absolute configurations, were established by extensive spectroscopic methods complemented by single-crystal X-ray diffraction analyses, electronic circular dichroism (ECD), and density-functional theory (DFT) calculations of nuclear magnetic resonance (NMR) data including DP4+ analysis. The hypoglycemic activity of these compounds was assessed using a diabetic zebrafish model. Brasilterpenes A (1) and C (3) significantly reduced free blood glucose in hyperglycemic zebrafish in vivo by improving insulin sensitivity and suppressing gluconeogenesis. Moreover, the hypoglycemic activity of compound 3 was comparable to the positive control, anti-diabetes drug rosiglitazone. These results suggested brasilterpene C (3) had promising anti-diabetes potential.
Background Glioblastoma (GBM) is a brain tumor with poor prognosis. Dexmedetomidine (Dex) regulates the biological behaviors of tumor cells to accelerate or decelerate cancer progression.
An anti-reflective (AR) fluoride coating in the 170–230 nm spectral range is prepared by the thermal evaporation method for the applications of widely tunable deep-ultraviolet diode-pumped solid-state lasers. The transmittance of an AR coated calcium fluoride (CaF2) window in thickness 3 mm is measured to be in the range of 95.8% at 170 nm to 97.1% at 230 nm, with the maximum transmittance 99.2% and the minimum residual reflectance 0.04% appeared at 195 nm. The experimental results indicate that treating the AR coated window and the bare substrate with ultraviolet irradiation can significantly improve their optical performance.