Rational:Salmonella Enteritidis (S. Enteritidis) is a globally significant zoonotic foodborne pathogen which has led to large numbers of deaths in humans and caused economic losses in animal husbandry. S. Enteritidis invades host cells and survives within the cells, causing resistance to antibiotic treatment. Effective methods of elimination and eradication of intracellular S. Enteritidis are still very limited. Here we evaluated whether a new intracellular antibacterial strategy using iron oxide nanozymes (IONzymes) exerted highly antibacterial efficacy via its intrinsic peroxidase-like activity in vitro and in vivo.Methods: The antibacterial activities of IONzymes against planktonic S. Enteritidis, intracellular S. Enteritidis in Leghorn Male Hepatoma-derived cells (LMH), and liver from specific pathogen free (SPF) chicks were investigated by spread-plate colony count method and cell viability assay. Changes in levels of microtubule-associated protein light chain 3 (LC3), a widely used marker for autophagosomes, were analyzed by immunoblotting, immunofluorescence, and electron microscopy. Reactive oxygen species (ROS) production was also assessed in vitro. High-throughput RNA sequencing was used to investigate the effects of IONzymes on liver transcriptome of S. Enteritidis-infected chicks. Results: We demonstrated that IONzymes had high biocompatibility with cultured LMH cells and chickens, which significantly inhibited intracellular S. Enteritidis survival in vitro and in vivo. In addition, co-localization of IONzymes with S. Enteritidis were observed in autophagic vacuoles of LMH cells and liver of chickens infected by S. Enteritidis, indicating that IONzymes mediated antibacterial reaction of S. Enteritidis with autophagic pathway. We found ROS level was significantly increased in infected LMH cells treated with IONzymes, which might enhance the autophagic elimination of intracellular S. Enteritidis. Moreover, orally administered IONzymes decreased S. Enteritidis organ invasion of the liver and prevented pathological lesions in a chicken-infection model. Non-target transcriptomic profiling also discovered IONzymes could change hepatic oxidation-reduction and autophagy related gene expressions in the S. Enteritidis infected chickens. Conclusion: These data suggest that IONzymes can increase ROS levels to promote the antibacterial effects of acid autophagic vacuoles, and thus suppress the establishment and survival of invading intracellular S. Enteritidis. As a result, IONzymes may be a novel alternative to current antibiotics for the control of intractable S. Enteritidis infections.
Limited research has been performed to evaluate the effects of high-frequency electrical stunning (ES) methods on the lipid oxidative stability of the meat goose livers. This study was conducted to evaluate the effects of high-frequency-ES current intensities on lipid oxidative stability and antioxidant capacity in the liver of Yangzhou goose (Anser cygnoides domesticus). Forty 92-day-old male Yangzhou geese were randomly divided into five treatments (n = 8). Geese were not stunned (control) or exposed to ES for 10 s with alternating current (AC) at 500 Hz in a water bath. Current intensities were set at 30 V/20 mA (E30V), 60 V/40 mA (E60V), 90 V/70 mA (E90V), or 120 V/100 mA (E120V), respectively. The malondialdehyde level at day 0 was the highest in 120 V (p < 0.05). Antioxidant enzymes’ activity on day 2 was the highest in E60V. The 1, 1-diphenyl-2-picrylhydrazyl free radical (DPPH·) elimination ability was lower in the E120V than that in the E60V at two days and four days postmortem (p < 0.05). A combination of 60 V/40 mA/ 500 Hz/ 10 s per bird could be applied in the ES of Yangzhou geese to improve the lipid oxidative stability and antioxidant capacity in the livers.
Salmonellosis is a zoonotic infection caused by Salmonella enterica serotypes contracted from contaminated products. We hypothesized that competitive exclusion between Salmonella serotypes in neonatal broilers would reduce colonization and affect the host immune response. Day of hatch broilers were randomly allocated to one of six treatment groups: (1) control, which received saline, (2) Salmonella Kentucky (SK) only on day 1 (D1), (3) Salmonella Typhimurium (ST) or Salmonella Enteritidis (SE) only on D1, (4) SK on D1 then ST or SE on day 2 (D2), (5) ST or SE on D1 then SK on D2, and (6) SK and ST or SE concurrently on D1. Salmonella gut colonization and incidence were measured from cecal contents. Livers and spleens were combined and macerated to determine systemic translocation. Relative mRNA levels of interleukin-1β (IL-1β), IL-6, IL-10, IL-18, and gamma interferon (IFN-γ) were measured in cecal tonsils and liver to investigate local and systemic immune responses. When a serotype was administered first, it was able to significantly reduce colonization of the following serotype. Significant changes were found in mRNA expression of cytokines. These results suggest competitive exclusion by Salmonella enterica serotypes affect local and systemic immune responses.
This study tested the effect of distillers dried grains with soluble (DDGS) inclusion in a broiler diet, with or without supplementation of exogenous enzymes, on the microbiota composition, intestinal health, diet digestibility and performance. A total of 288 one-day-old chickens was assigned to 6 treatments (8 replicate of 6 birds each) according to a completely randomized design with a 3 × 2 factorial scheme with 3 DDGS levels (0, 7 and 14%) and 2 inclusions of exogenous enzymes (with or without a multicarbohydrase complex + phytase [MCPC]). The results exhibited that DDGS inclusion up to 14% did not impair broilers performance up to 28 d, however, DDGS-fed animals exhibited significant improvement with the MCPC supplementation. No effects of the enzymes in the ileal digestibility were found at 21 d. DDGS inclusion in the diet affected dry matter and gross energy digestibility. Broilers fed diets with MCPC were found to have less intestinal histological alteration thus better gut health. No effect of DDGS, enzyme or interaction of those were observed for intestinal permeability and in the serum inflammatory biomarker (calprotectin) at 7 and 28 d. The increase of DDGS percentage in the diet reduced the diversity of the ileal microbiota but increased the cecal microbiota diversity. The inclusion of DDGS showed positive effects on microbiota composition due to a reduction of Proteobacteria phylum in the ileum at 28d and a reduction in the presence of Enterococcaceae family in the ileum at 14 and 28d. The inclusion of MCPC complex might promote beneficial changes in the ileal and cecal microbiota due reduce of Proteobacteria, Bacillaceae and Enterobacteriaceae. The supplementation of xylanase, β-glucanase, arabinofuranosidase and phytase to a DDGS diet improves performance and intestinal health allowing the use of these subproduct in the poultry nutrition.
Monitoring antimicrobial resistance of foodborne pathogens in poultry is critical for food safety. We aimed to compare antimicrobial resistance phenotypes in Salmonella isolated from poultry samples as influenced by isolation and antimicrobial susceptibility testing methods. Salmonella isolates were cultured from a convenience sample of commercial broiler ceca with and without selective broth enrichment, and resistance phenotypes were determined for 14 antimicrobials using the Sensititre® platform and a qualitative broth breakpoint assay. The broth breakpoint method reported higher resistance to chloramphenicol, sulfisoxazole, and the combination of trimethoprim and sulfamethoxazole, and lower resistance to streptomycin as compared to the Sensititre® assay in trial one. Selective enrichment of samples containing Salmonella in Rappaport-Vassiliadis broth reported lowered detectable resistance to amoxicillin/clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftriaxone, nalidixic acid, and meropenem, and increased resistance to streptomycin and tetracycline than direct-plating samples in trial one. Using matched isolates in trial two, the Sensititre® assay reported higher resistance to chloramphenicol and gentamicin, and lower resistance to nalidixic acid as compared to the broth breakpoint method. These results suggest methodology is a critical consideration in the detection and surveillance of antimicrobial resistance phenotypes in Salmonella isolates from poultry samples and could affect the accuracy of population or industry surveillance insights and intervention strategies.
A rapid and effective means to clean and disinfect premises is needed by the poultry industry. We hypothesized that commercially available foaming disinfectants and cleaners applied via a compressed air foam system (CAFS) may be used to significantly reduce aerobic bacteria in a commercial caged layer complex. Six field trials were conducted to evaluate current industry cleaning and disinfection protocols and the proposed CAFS application. A commercially available chlorinated alkaline foaming cleaner (CHL/ALK) was applied in trials 1 and 2 by CAFS to one half of the house, and the other half of the house was not treated. The entire house was then washed with a high-pressure water rinse (HPWR). A commercially available peroxyacetic acid (PAA) in trials 3 and 4 or a 14% glutaraldehyde (HI GLUT)/2.5% quaternary ammonia (QAC) blended disinfectant in trials 5 and 6 was applied by CAFS to one half of a washed house. The remainder of the house was then treated with a 7% glutaraldehyde (LO GLUT)/26% QAC, which was spray-applied to cages by the integrator. Environmental swabs of drinker cups and cage floors were collected pre- and post-treatment to determine if aerobic bacteria were reduced. The HPWR and the CHL/ALK treatments did not consistently reduce bacteria on treated surfaces. Significant differences were observed with each of the CAFS applications of the PAA product, resulting in bacterial reductions of 1.83 to 2.27 log10 cfu/sample. Although inconsistent, differences (P < 0.05) were observed with the spray application of the 0.4% (v/v) LO GLUT/QAC with bacterial reductions of 0.42 to 2.15 log10 cfu/sample on both surfaces. The CAFS application of the 1.6% (v/v) HI GLUT/QAC resulted in bacterial reductions (P < 0.05) of 3.11 to 3.78 log10 cfu/sample. These data suggest that the application of 3.0% (v/v) PAA or a 1.6% (v/v) HI GLUT/QAC via CAFS may be used to consistently and significantly reduce aerobic bacteria in a commercial layer complex.
Recently, a P-deficient diet caused rickets in commercial chicks within three days. This study aimed to investigate the duration of onset of rickets in chicks. Data were collected from 3–11 day old chicks raised on 88 commercial farms. Male day-old Arbor Acres Plus broilers (n = 450) were studied in three trials, with three to four treatments each. Each treatment used one of the following crumbled feeds: control feed (calcium (Ca): phosphorus (P)-1.41), slightly high Ca:P feed (SHCa:P, Ca:P-2.69), high Ca:P ratio, P deficient feed (HCa:P, Ca:P-3.08), and HCa:P feed plus 1.5% dicalcium phosphate (HCa:P + DP). Each treatment had three replicates with 15 birds each. Rickets was induced by HCa:P, and cured by HCa:P + DP, confirmed by gross anatomy, gait score, serum P concentration and growth performance. Lameness was not found in control groups, whereas, observed in the HCa:P groups as early as day 2.7 on commercial farms and day 3 in experimental farm. Serum P was reduced in HCa:P (p < 0.01). Bodyweight and feed intake started decreasing at day 3 on commercial farms and in all trials (p < 0.01). The duration of onset of hypophosphatemic rickets in broiler chicks fed HCa:P crumbled feed is approximately three days.
During the 2014-2015 US highly pathogenic avian influenza (HPAI) outbreak, 50.4 million commercial layers and turkeys were affected, resulting in economic losses of $3.3 billion. Rapid depopulation of infected poultry is vital to contain and eradicate reportable diseases like HPAI. The hypothesis of the experiment was that a compressed air foam (CAF) system may be used as an alternative to carbon dioxide (CO₂) inhalation for depopulating caged layer hens. The objective of this study was to evaluate corticosterone (CORT) and time to cessation of movement (COM) of hens subjected to CAF, CO₂ inhalation, and negative control (NEG) treatments. In Experiment 1, two independent trials were conducted using young and spent hens. Experiment 1 consisted of five treatments: NEG, CO₂ added to a chamber, a CO₂ pre-charged chamber, CAF in cages, and CAF in a chamber. In Experiment 2, only spent hens were randomly assigned to three treatments: CAF in cages, CO₂ added to a chamber, and aspirated foam. Serum CORT levels of young hens were not significantly different among the CAF in cages, CAF in a chamber, NEG control, and CO₂ inhalation treatments. However, spent hens subjected to the CAF in a chamber had significantly higher CORT levels than birds in the rest of the treatments. Times to COM of spent hens subjected to CAF in cages and aspirated foam were significantly greater than of birds exposed to the CO₂ in a chamber treatment. These data suggest that applying CAF in cages is a viable alternative for layer hen depopulation during a reportable disease outbreak.