Manganese tetrakis(4-sulfonatophenyl)porphyrin chloride was grafted onto powdered chitosan via an acid–base reaction and ligation. The grafted catalyst was characterized by transmission electron microscopy, ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and thermogravimetry. Ethylbenzene oxidation with O[Formula: see text] by the catalyst in the absence of additives and solvents can achieve moderate yields (approximately 30%) of acetophenone and phenethyl alcohol. The grafted catalyst can be reused four times for oxidation reactions. The results indicate that the catalytic activity of manganese tetrakis(4-sulfonatophenyl)porphyrin chloride is promoted by the ligation and grafting function of the amino groups in the powdered chitosan.
Regiodivergent formal [5+2]- and [4+2]-annulation reactions of indole derivatives with 2-(2-alkynyl)aryl cyclopropane-1,1-diesters (ACPs) have been developed. A series of tetracyclic indole derivatives were delivered in a 77% average yield with excellent regioselectivities enabled by Au(I)/Sc(III) bimetallic relay catalysis. A gram-scale reaction and further transformation of the resulting tetracyclic indoles demonstrated the practical utility of this protocol. Moreover, the photophysical properties of the obtained multicyclic compounds were also investigated.
Abstract Organometallic rhodium(III) complexes with curcuminoid ligands attracted considerable attention in biological‐related fields and the variation of curcuminoid ligands may regulate the biological activity of these organometallic rhodium(III) complexes. To deeply evaluate the biological influences of these complexes, the binding interactions between three rhodium(III) complexes with curcuminoid ligands and human serum albumin (HSA) were comparably investigated by spectroscopic and electrochemical techniques. The results suggested that the intrinsic fluorescence of HSA was quenched by three complexes through static fluorescence quenching mode. Three complexes bonded with Sudlow's site I of HSA to form ground‐state compounds under the binding forces of van der Waals interactions, hydrogen bonds formation, and protonation. Finally, the native conformational structure and the thermal stability of HSA were all changed. Space steric hindrance of complexes took part in the differences of the fluorescence quenching processes, and the chemical polarity of the complexes played a vital role in the variations of the structure and biological activity of HSA. These results illustrated the molecular interactions between protein and organometallic rhodium(III) complexes with curcuminoid ligands, offering new insight about the prospective applications of analogical rhodium(III) complexes in biomedicine areas.
A versatile palladium catalyst system for the decarboxylative Heck coupling is described. A variety of arenecarboxylic acids can be coupled to a wide range of olefins with high regioselectivity and high yields. The reaction tolerates various functional groups such as acetates, halogens and amines.