Deubiquitinases (DUBs) play important roles in various human cancers and targeting DUBs is considered as a novel anticancer therapeutic strategy. Overexpression of ubiquitin specific protease 7 and 22 (USP7 and USP22) are associated with malignancy, therapy resistance, and poor prognosis in many cancers. Although both DUBs are involved in the regulation of similar genes and signaling pathways, such as histone H2B monoubiquitination (H2Bub1), c-Myc, FOXP3, and p53, the interdependence of USP22 and USP7 expression has never been described. In the study, we found that targeting USP7 via either siRNA-mediated knockdown or pharmaceutical inhibitors dramatically upregulates USP22 in cancer cells. Mechanistically, the elevated USP22 occurs through a transcriptional pathway, possibly due to desuppression of the transcriptional activity of SP1 via promoting its degradation upon USP7 inhibition. Importantly, increased USP22 expression leads to significant activation of downstream signal pathways including H2Bub1 and c-Myc, which may potentially enhance cancer malignancy and counteract the anticancer efficacy of USP7 inhibition. Importantly, targeting USP7 further suppresses the in vitro proliferation of USP22-knockout (USP22-Ko) A549 and H1299 lung cancer cells and induces a stronger activation of p53 tumor suppressor signaling pathway. In addition, USP22-Ko cancer cells are more sensitive to a combination of cisplatin and USP7 inhibitor. USP7 inhibitor treatment further suppresses in vivo angiogenesis and tumor growth and induced more apoptosis in USP22-Ko cancer xenografts. Taken together, our findings demonstrate that USP7 inhibition can dramatically upregulate USP22 in cancer cells; and targeting USP7 and USP22 may represent a more effective approach for targeted cancer therapy, which warrants further study. Video Abstract.
A systematic review and meta-analysis were conducted to evaluate the diagnostic precision of radiomics in the differential diagnosis of parotid tumors, considering the increasing utilization of radiomics in tumor diagnosis. Although some researchers have attempted to apply radiomics in this context, there is ongoing debate regarding its accuracy.
(Molecular Therapy: Nucleic Acids 21, 229–241; September 2020) This article has been retracted at the request of the editor-in-chief. Corresponding author D.F. reached out to the journal to request a correction because "Fig. 2F was displayed mistakenly." An investigation by the editorial office revealed evidence for image duplication in identical or altered fashion in Figures 2F and 4D as well evidence of image duplication in identical or altered fashion between Figures 2F and 4D in the this article and Figure 5H in “MiRNA-211 suppresses cell proliferation, migration and invasion by targeting SPARC in human hepatocellular carcinoma” (Deng et al., 2016, Sci. Rep. 6, 26679, https://doi.org/10.1038/srep26679) and Figure 3B in “Core fucosylated glycan-dependent inhibitory effect of QSOX1-S on invasion and metastasis of hepatocellular carcinoma” (Zhang et al., 2019, Cell Death Discov., 5, 84, https://doi.org/10.1038/s41420-019-0164-8). This reuse (and in part misrepresentation) of data without appropriate attribution represents a severe abuse of the scientific publishing system. The authors do not agree to retract. RETRACTED: Long Noncoding RNA OIP5-AS1 Promotes the Progression of Liver Hepatocellular Carcinoma via Regulating the hsa-miR-26a-3p/EPHA2 AxisMa et al.Molecular Therapy - Nucleic AcidsJune 1, 2020In BriefThis article has been retracted: please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy ). Full-Text PDF Open Access
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with major challenges in both prevention and therapy. Metformin, adenosine monophosphate-activated protein kinase (AMPK) activator, has been suggested to reduce the incidence of HCC when used for patients with diabetes in preclinical and clinical studies. However, the possible effects of metformin and their mechanisms of action in non-diabetic HCC have not been adequately investigated.
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. HCC has a poor prognosis associated with tumor recurrence and drug resistance, which has been attributed to the existence of hepatic cancer stem cells (HCSCs). However, the characteristics and regulatory mechanisms of HCSCs remain unclear. We therefore established a novel system to enrich HCSCs and we demonstrate that these HCSCs exhibit cancer stem cell properties.We used miRNA and mRNA high-throughput sequencing data sets to determine molecular signatures and regulatory mechanisms in HCSCs. Paired miRNA and gene deep sequencing data in HCSCs versus HCC cells were used to identify candidate biomarkers of HCSCs. Using network analysis, we studied the relationship between miRNA and gene biomarkers, and KEGG pathway enrichment analysis was performed to study the function of candidate biomarkers.We identified 9 up- and 9 down-regulated miRNAs and 115 up- and 402 down-regulated genes in HCSCs compared with HCC cells. A miRNA-gene network was constructed using 651 miRNA-gene interactions (between 7 up-regulated miRNAs and 274 down-regulated genes), and 103 miRNA-gene interactions (between 9 down-regulated miRNAs and 62 up-regulated genes). Pathway enrichment analysis identified five tumor invasion- and metastasis-related pathways and MAPK signaling associated with HCSCs. We further discovered two novel pathways that likely play a role in the regulation of HCSCs.We identified a molecular expression signature and pathway regulatory mechanisms in HCSCs with potential diagnostic and therapeutic value.
Zeta chain-associated protein kinase 70 (ZAP-70) is a non-receptor tyrosine kinase that interacts with the activated T-cell receptor to transduce downstream signals, and thus plays an important role in the adaptive immune system. The biphosphorylated immunotyrosine-based activation motifs (ITAM-Y2P) binds to the N-SH2 and C-SH2 domains of ZAP-70 to promote the activation of ZAP-70. The present study explores molecular mechanisms of allosteric inactivation of ZAP-70 induced by the hot spot W165C mutation through atomically detailed molecular dynamics simulation approaches. We report microsecond-length simulations of two states of the tandem SH2 domains of ZAP-70 in complex with the ITAM-Y2P motif, including the wild-type and W165C mutant. Extensive analysis of local flexibility and dynamical correlated motions show that W165C mutation changes coupled motions of protein domains and community networks. The binding affinities of the ITAM-Y2P motif to the wild-type and W165C mutant of ZAP-70 are predicted using binding free energy calculations. The results suggest that the driving force to decrease the binding affinity in the W165C mutant derives from the difference in the protein-protein electrostatic interactions. Moreover, the per-residue free energy decomposition unravels that the contributions from residues in the phosphorylated Tyr315 (pY315) binding site, in particular pY315 of ITAM-Y2P, and Arg43, Tyr240 of ZAP-70, are the key determinants for the loss of binding affinity. This study may insights into our understanding of the pathological mechanism of ZAP-70.Communicated by Ramaswamy H. Sarma.