Abstract Although itch and pain have many similarities, they are completely different in perceptual experience and behavioral response. In recent years, we have a deep understanding of the neural pathways of itch sensation transmission. However, there are few reports on the role of non-neuronal cells in itch. Microglia are known to play a key role in chronic neuropathic pain and acute inflammatory pain. It is still unknown whether microglia are also involved in regulating the transmission of itch sensation. In the present study, we used several kinds of transgenic mice to specifically deplete CX3CR1+ central microglia and peripheral macrophages together (whole depletion), or selectively deplete central microglia alone (central depletion). We observed that the acute itch responses to histamine, compound 48/80 and chloroquine were all significantly reduced in mice with either whole or central depletion. Spinal c-fos mRNA assay and further studies revealed that histamine and compound 48/80, but not chloroquine elicited primary itch signal transmission from DRG to spinal Npr1- and somatostatin-positive neurons relied on microglial CX3CL1-CX3CR1 pathway. Our results suggested that central microglia were involved in multiple types of acute chemical itch transmission, while the underlying mechanisms for histamine dependent and non-dependent itch transmission were different that the former required the CX3CL1-CX3CR1 signal pathway.
Abstract Cannabis is an annual herb of the genus Cannabis, with a history of medical use going back thousands of years. However, its abuse causes many side-effects, including confusion of consciousness, alienation, and mental disorders such as schizophrenia and depression. Research conducted on rodents suggests that there are two types of cannabinoid receptors - cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). CB1R is found mostly in the central nervous system, particularly in the prefrontal cortex (PFC), and alterations in its expression in the PFC have been strongly linked to mental disorders. Within the layers of the PFC, Brodmann area 46 is associated with the processing of complex cognitive information. However, it remains unclear whether CB1R is expressed in the PFC 46 area of non-human primate. In this work, we applied western blotting along with immunofluorescent histochemical staining to investigate the distribution pattern of CB1R in the PFC of nonhuman primate, Our findings reveal that CB1R is highly expressed in the monkey PFC, especially in area 46. Furthermore, CB1R exhibits a layered distribution pattern within area 46 of the PFC, with the inner granular layer displaying the highest expression levels. Additionally, CB1R + PV + cells are widely distributed in lay Ⅱ-Ⅵ of area 46, with layer IV showing notable prevalence. In conclusion, CB1R is distributed in the PV interneurons in area 46 of the prefrontal cortex, particularly in layer Ⅳ, suggesting that cannabis may modulate PFC activities via regulating interneuron in the PFC. And cannabis-induced side effects may be caused by abnormal expression of CB1R.
Adv. Energy Mater. 2020, 10, 1903553 In the original manuscript, the spelling “Anita Ho-Ballie” is incorrect. The correct spelling is, “Anita Ho-Baillie” The authors apologize for any inconvenience caused.
Abstract Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in inflammatory pain that could be used for potential therapeutic strategies.
SUMMARY Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in acute, sustained, inflammatory pain that could be used for potential therapeutic strategies.