Spontaneous clearance of hepatitis B virus (HBV) is frequent in adults (95%) but rare in infants (5%), emphasizing the critical role of age-related hepatic immunocompetence. However, the underlying mechanisms of hepatocyte-specific immunosurveillance and age-dependent HBV clearance remain unclear. Here, we identified PGLYRP2 as a hepatocyte-specific pattern recognition receptor with age-dependent expression, and demonstrated that phase separation of PGLYRP2 was a critical driver of spontaneous HBV clearance in hepatocytes. Mechanistically, PGLYRP2 recognized and potentially eliminated covalently closed circular DNA (cccDNA) via phase separation, coordinated by its intrinsically disordered region and HBV DNA-binding domain (PGLYRP2IDR/209-377) in the nucleus. Additionally, PGLYRP2 suppressed HBV capsid assembly by directly interacting with the viral capsid, mediated by its PGRP domain. This interaction promoted the nucleocytoplasmic translocation of PGLYRP2 and subsequent secretion of the PGLYRP2-HBV capsid complex, thereby bolstering the hepatic antiviral response. Pathogenic variants or deletions in PGLYRP2 impaired its ability to inhibit HBV replication, highlighting its essential role in hepatocyte-intrinsic immunity. These findings suggest that targeting the PGLYRP2-mediated host-virus interaction may offer a potential therapeutic strategy for the development of anti-HBV treatments, representing a promising avenue for achieving a functional cure for HBV infection.
Pyroptosis is a type of programmed cell death that induces myocardial ischemia-reperfusion injury (I/RI), which leads to cardiac dysfunction and even lethal reperfusion injury. MiR-122 is a liver-specific miRNA associated with coronary heart disease, but its role in pyroptosis activation in myocardial I/RI remains unclear. Thus, this study aimed to determine whether miR-122 inhibition exerts myocardial I/RI protection in in vivo and in vitro models. An I/RI model was established in vivo using C57BL/J6 male mice. MiR-122 expression was upregulated in the heart tissues from the I/RI group. Quantitative results of echocardiography parameters showed that miR-122 inhibition improved cardiac function and downregulated interleukin (IL)-1β, IL-18, caspase 1, and caspase 11. However, pretransfection with recombinant adeno-associated virus type 9 encoding a DUSP4-specific siRNA (AAV9-siDUSP4) blocked the protective effects of miR-122 inhibition. A hypoxia/reoxygenation (H/R) model was established to mimic the I/R condition in vitro using H9C2 cells. Results showed that miR-122 inhibition increased superoxide dismutase activity (SOD) and cell viability and decreased malondialdehyde (MDA) level, IL-1β, IL-18, caspase 1, caspase 11, and cell death. These protective effects were abolished by transfection with DUSP4-specific siRNA. In summary, miR-122 expression is upregulated in I/RI, and miR-122 inhibition alleviates I/RI by suppressing pyroptosis through targeting DUSP4. Thus, miR-122 may be a novel therapeutic target for treating myocardial I/RI.
Background/Aims: Licorice has been used to treat many diseases, including palpitations, in both Eastern and Western societies for thousands of years. It has been reported that glycyrrhetinic acid (GA), an aglycone saponin extracted from licorice root, exerts protective effects on the cardiovascular system, limits infarct sizes and protects against the development of arrhythmia. However, the mechanisms underlying the effects of glycyrrhetinic acid on the cardiovascular system remain poorly understood. This study aimed to determine the mechanisms underlying the protective effects of GA against lethal cardiac arrhythmias induced via ischemia-reperfusion in rat hearts, and to examine its electropharmacological properties. Materials and Methods: Anesthetized rats were divided into control (CTL), GA5, GA10, and GA20 groups. GA was administered intravenously 15 min before the occlusion of the left anterior descending coronary artery, at dosages of 5, 10 and 20 mg/kg, respectively. Single ventricular myocytes were isolated using enzymolysis. The whole-cell patch clamp technique was utilized to record Ica, L, Ito and action potentials (APs). Results: During reperfusion, the incidence of ventricular fibrillation (VF) was decreased in each of the groups compared with the CTL group (p<0.05). The ventricular tachycardia (VT)/VF score was significantly decreased in the GA20 group. Action potential durations (APDs) were prolonged by GA; both L-type calcium current (Ica-L) and transient outward potassium current (Ito) were blocked in a concentration-dependent manner by GA. Conclusion: These results suggest that GA attenuates both the susceptibility to and the incidence of fatal ventricular arrhythmia during reperfusion in rat hearts via the prolongation of the APD and the inhibition of both Ica-L and Ito. GA appears to be a promising antiarrhythmic agent in the setting of ischemia/reperfusion.
Without an effective strategy for targeted therapy, glioblastoma is still incurable with a median survival of only 15 months. Both chronic inflammation and epigenetic reprogramming are hallmarks of cancer. However, the mechanisms and consequences of their cooperation in glioblastoma remain unknown. Here, we discover that chronic inflammation governs H3K27me3 reprogramming in glioblastoma through the canonical NF-κB pathway to target EZH2. Being a crucial mediator of chronic inflammation, the canonical NF-κB signalling specifically directs the expression and redistribution of H3K27me3 but not H3K4me3, H3K9me3 and H3K36me3. Using RNA-seq screening to focus on genes encoding methyltransferases and demethylases of histone, we identify EZH2 as a key methyltransferase to control inflammation-triggered epigenetic reprogramming in gliomagenesis. Mechanistically, NF-κB selectively drives the expression of EZH2 by activating its transcription, consequently resulting in a global change in H3K27me3 expression and distribution. Furthermore, we find that co-activation of NF-κB and EZH2 confers the poorest clinical outcome, and that the risk for glioblastoma can be accurately molecularly stratified by NF-κB and EZH2. It is notable that NF-κB can potentially cooperate with EZH2 in more than one way, and most importantly, we demonstrate a Synergistic effect of cancer cells induced by combinatory inhibition of NF-κB and EZH2, which both are frequently over-activated in glioblastoma. In summary, we uncover a functional cooperation between chronic inflammation and epigenetic reprogramming in glioblastoma, combined targeting of which by inhibitors guaranteed in safety and availability furnishes a potent strategy for effective treatment of this fatal disease.
Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.
Inflammasomes are fundamental innate immune mechanisms that promote inflammation and induce an inflammatory form of programmed cell death, pyroptosis. Pyroptotic inflammasome has been reported to be closely associated with tumorigenesis and prognosis of multiple cancers. Emerging studies show that the inflammasome assembly into a higher-order supramolecular complex has been utilized to evaluate the status of the innate immune response. The inflammasomes are now regarded as cellular signaling hubs of the innate immunity that drive the production of inflammatory cytokines and consequent recruitment of immune cells to the tumor sites. Herein, we provided an overview of molecular characteristics and biological properties of canonical and non-canonical inflammasome signaling in cancer immunology and immunotherapy. We also focus on the mechanism of regulating pyroptotic inflammasome in tumor cells, as well as the potential roles of inflammasome-mediated pyroptotic cell death in cancers, to explore the potential diagnostic and therapeutic markers contributing to the prevention and treatment of cancers.
Ischemic heart disease (IHD) is currently one of the leading causes of death among cardiovascular diseases worldwide. In addition, blood reflow and reperfusion paradoxically also lead to further death of cardiomyocytes and increase the infarct size. Multiple evidences indicated that mitochondrial function and structural disorders were the basic driving force of IHD. We summed up the latest evidence of the basic associations and underlying mechanisms of mitochondrial damage in the event of ischemia/reperfusion (I/R) injury. This review then reviewed natural plant products (NPPs) which have been demonstrated to mitochondria-targeted therapeutic effects during I/R injury and the potential pathways involved. We realized that NPPs mainly maintained the integrality of mitochondria membrane and ameliorated dysfunction, such as improving abnormal mitochondrial calcium handling and inhibiting oxidative stress, so as to protect cardiomyocytes during I/R injury. This information will improve our knowledge of mitochondrial biology and I/R-induced injury's pathogenesis and exhibit that NPPs hold promise for translation into potential therapies that target mitochondria.
Background . Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA). However, the mechanism of action remains poorly understood. Aim . The effects of GA on the delayed rectifier potassium current (IK), the rapidly activating (IKr) and slowly activating (IKs) components ofIK, and the HERG K + channel expressed in HEK-293 cells were investigated. Materials and Methods . Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to recordIK(IKr,IKs) and the HERG K + current. Results . GA (1, 5, and 10 μ M) inhibitedIK(IKr,IKs) and the HERG K + current in a concentration-dependent manner. Conclusion . GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition ofIK(IKr,IKs) and HERG K + channel.