Abstract Microglia play diverse pathophysiological roles in Alzheimer’s disease (AD), with genetic susceptibility factors skewing microglial cell function to influence AD risk. CD33 is an immunomodulatory receptor associated with AD susceptibility through a single nucleotide polymorphism that modulates mRNA splicing, skewing protein expression from a long protein isoform (CD33M) to a short isoform (CD33m). Understanding how human CD33 isoforms differentially impact microglial cell function in vivo has been challenging due to functional divergence of CD33 between mice and humans. We address this challenge by studying transgenic mice expressing either of the human CD33 isoforms crossed with the 5XFAD mouse model of amyloidosis and find that human CD33 isoforms have opposing effects on the response of microglia to amyloid-β (Aβ) deposition. Mice expressing CD33M have increased Aβ levels, mo7re diffuse plaques, fewer disease-associated microglia, and more dystrophic neurites compared to control 5XFAD mice. Conversely, CD33m promotes plaque compaction and microglia-plaque contacts, and minimizes neuritic plaque pathology, highlighting an AD protective role for this isoform. Protective phenotypes driven by CD33m are detected at an earlier timepoint compared to the more aggressive pathology in CD33M mice that appears at a later timepoint, suggesting that CD33m has a more prominent impact on microglia cell function at earlier stages of disease progression. In addition to divergent roles in modulating phagocytosis, scRNAseq and proteomics analyses demonstrate that CD33m + microglia upregulate nestin, an intermediate filament involved in cell migration, at plaque contact sites. Overall, our work provides new functional insights into how CD33, as a top genetic susceptibility factor for AD, modulates microglial cell function.
Abstract Introduction. Zelenirstat (PCLX-001) is a small molecule inhibitor of N-myristoylation, a process that involves addition of the fatty acid myristate to over 200 proteins by two N-myristoyltransferases (NMT1 and 2). These include Src family kinases and c-Abl. Inhibition of N-myristoylation by zelenirstat leads to the degradation of non-myristoylated proteins and cancer cell death. We conducted a phase I trial to evaluate the safety, tolerability, and maximally tolerated dose (MTD) of zelenirstat in patients with refractory cancer. Methods. Differential mass spectrometry was performed in NMT1 and NMT2 CRISPR/Cas9 KOs or zelenirstat-treated HAP1 cells to identify N-myristoylation-regulated proteins. Fully consented patients with advanced solid malignancies or refractory B-cell lymphomas were administered escalating doses of zelenirstat in 28-day cycles until progression or dose-limiting toxicity (DLT). Results. Proteomic analysis of cells with genetic or pharmacological NMT inhibition was performed to gain insights into NMT substrates and function. In addition to the rapid degradation of SFKs, which disrupts the pro-survival signaling of RTKs, we identified multiple respiratory complex I proteins as the most degraded, including NDUFAF4. NMT1 KO and zelenirstat treatment disrupted complex I leading to oxidative phosphorylation (OXPHOS) inhibition, which is essential for both cancer stem cell survival and metastasis. Continuous once-daily zelenirstat at 20 mg to 210 mg was well tolerated, with no dose-limiting toxicities in 24 patients up to and including 210 mg. Gastrointestinal DLTs were observed in the 280 mg cohort, establishing 210 mg as the MTD. Oral absorption was rapid, and pharmacokinetics were suitable for once daily dosing. Seven patients had stable disease as best response, including pancreatic, ovarian and colon cancer patients; one colon cancer patient with 5 prior lines of therapy continues 210 mg beyond 11 cycles with reduction in carcinoembryonic antigen (CEA) and tumor dimensions. Kaplan-Meier analysis revealed longer progression-free survival (log-rank p=0.033) and overall survival (p=0.026) in the patients treated at 210 mg (n=7) when compared with patients treated in lower dose cohorts (n=17). Conclusion. Zelenirstat has a unique dual impact on growth signaling and OXPHOS. Having previously demonstrated pre-clinical efficacy in hematologic cancers in vitro and in vivo, we now demonstrate the therapeutic potential of zelenirstat in patients with refractory advanced solid malignancies, warranting further clinical evaluation in these indications. Citation Format: Luc Gerard Berthiaume, Erwan Beauchamp, Jay Gamma, Rony Pain, Morris A. Kostiuk, Christopher R. Cromwell, Eman W. Moussa, Olivier Julien, Basil P. Hubbard, John Kuruvilla, Laurie H. Sehn, Jennifer Spratlin, Rahima Jamal, Randeep Sangha, John R. Mackey. N-myristoylation inhibitor zelenirstat: New mechanistic insights and efficacy signals from a first in human phase I study [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 2 (Late-Breaking, Clinical Trial, and Invited Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(7_Suppl):Abstract nr CT194.
Abstract The accumulation of tau aggregates is associated with neurodegenerative diseases collectively known as tauopathies. Tau aggregates isolated from different tauopathies such as Alzheimer’s disease, corticobasal degeneration and progressive supranuclear palsy have distinct cryo-electron microscopy structures with respect to their packed fibril cores. To understand the mechanisms by which tau can be sensitized to form distinct aggregate conformations, we created a panel of tau variants encoding for individual disease-associated missense mutations in full-length 0N4R tau (wild-type and 36 mutants). We developed a high-throughput protein purification platform for direct comparison of tau variants in biochemical assays. Structural analysis of the protease-resistant core of tau aggregates formed in vitro reveals that mutations can promote aggregate core packing distinct from that produced by WT tau. Comparing aggregate structure changes with aggregation kinetic parameters for tau mutants revealed no clear linkage between these two aggregation properties. We also found that tau mutation-dependent alterations of tau aggregate structure are not readily explained by current tau fibril structure data. This is the first study to show the broad potential of tau mutations to alter the packed core structures contained within aggregated tau and sheds new insights into the molecular mechanisms underlying the formation of tau aggregate structures that may drive their associated pathology in disease.
Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.
We have inserted a tryptophan (F77W) in the core of the regulatory domain of cardiac troponin C (cNTnC), and previously determined the structure of this mutant with and without the cosolvent trifluoroethanol (TFE). Interestingly, the orientations of the indole side chain of the Trp are in opposite directions in the two structures (Julien et al., Protein Sci 2009; 18:1165-1174). Fluorescence decay experiments for single Trp-containing proteins often show several lifetimes, which have been interpreted as reflecting conformational heterogeneity of the Trp side chain resulting from different rotamers. To test this interpretation, we monitored the effect of TFE on wild type, F77W and F77W-V82A calcium-saturated cNTnC using 2D (13)C-HSQC NMR and time-correlated single photon counting fluorescence spectroscopies. The time dependence of the Trp fluorescence decay was fit with three lifetimes. Addition of TFE caused a gradual, but limited decrease of the lifetimes due to dynamic quenching. For F77W cNTnC, the amplitude fractions of the lifetimes also changed upon addition of TFE-the long lifetime increased from 13 to 29%, while the middle lifetime decreased from 63 to 50% and the short lifetime remained relatively unchanged. For F77W-V82A cNTnC, comparable NMR changes are observed, confirming the switch in rotamer conformation, but only much smaller changes in fluorescence decay parameters were detected. These data indicate that the balance between the rotamer states can be changed without changing the lifetime amplitude fractions appreciably, and suggest that the environment(s) of the indole ring, responsible for the different lifetimes, can result from factors other than the intrinsic rotamer state of the tryptophan.