Ischemic stroke is a multi-factorial cerebrovascular disease with high worldwide morbidity and mortality. In the past few years, multiple studies have revealed the underlying mechanism of ischemia/reperfusion injury, including calcium overload, amino acid toxicity, oxidative stress, and inflammation. Connexin 43 (Cx43), the predominant connexin protein in astrocytes, has been recently proven to display non-substitutable roles in the pathology of ischemic stroke development and progression through forming gap junctions and hemichannels. Under normal conditions, astrocytic Cx43 could be found in hemichannels or in the coupling with other hemichannels on astrocytes, neurons, or oligodendrocytes to form the neuro–glial syncytium, which is involved in metabolites exchange between communicated cells, thus maintaining the homeostasis of the CNS environment. In ischemic stroke, the phosphorylation of Cx43 might cause the degradation of gap junctions and the opening of hemichannels, contributing to the release of inflammatory mediators. However, the remaining gap junctions could facilitate the exchange of protective and harmful metabolites between healthy and injured cells, protecting the injured cells to some extent or damaging the healthy cells depending on the balance of the exchange of protective and harmful metabolites. In this study, we review the changes in astrocytic Cx43 expression and distribution as well as the influence of these changes on the function of astrocytes and other cells in the CNS, providing new insight into the pathology of ischemic stroke injury; we also discuss the potential of astrocytic Cx43 as a target for the treatment of ischemic stroke.
The transient elevation of blood glucose produced following acute ischaemic stroke (AIS) has been described as stress-induced hyperglycaemia (SIH). SIH is common even in patients with AIS who have no previous diagnosis of diabetes mellitus. Elevated blood glucose levels during admission and hospitalization are strongly associated with enlarged infarct size and adverse prognosis in AIS patients. However, insulin-intensive glucose control therapy defined by admission blood glucose for SIH has not achieved the desired results, and new treatment ideas are urgently required. First, we explore the various definitions of SIH in the context of AIS and their predictive value in adverse outcomes. Then, we briefly discuss the mechanisms by which SIH arises, describing the dual effects of elevated glucose levels on the central nervous system. Finally, although preclinical studies support lowering blood glucose levels using insulin, the clinical outcomes of intensive glucose control are not promising. We discuss the reasons for this phenomenon.
Posterior reversible encephalopathy syndrome (PRES) is a relatively rare clinical disease, characterized by reversible subcortical vasogenic edema. Here, we present the first reported case of PRES induced by anlotinib, a multi-target tyrosine kinase inhibitor. A 56-year-old female patient with lung adenocarcinoma and bone metastasis experienced hypertension and mental confusion when she received anti-angiogenesis treatment. PRES was diagnosed after magnetic resonance of the patient's brain revealed hyperintensities bilaterally around the cerebellum, pons, fronto-parieto-occipital areas, and corona radiate. Diffusion-weighted imaging showed hyperintensities bilaterally in the parieto-occipital cortical regions. Subsequently, the patient was diagnosed with PRES, and remission was achieved with anti-hypertensive drugs. Six cases of rare adverse effects induced by anlotinib were reviewed in the literature. Since anlotinib has been widely applied as a novel third-line treatment in patients with non-small-cell lung cancer, the association between PRES and anlotinib would benefit neurologists and oncologists in future diagnoses and treatment.
Nur77 belongs to the NR4A subgroup of the nuclear receptor superfamily. Unlike other nuclear receptors, a natural ligand for Nur77 has not been identified yet. However, a few small molecules can interact with this receptor and induce a conformational change to mediate its activity. The expression and activation of Nur77 can be rapidly increased using various physiological and pathological stimuli. In vivo and in vitro studies have demonstrated its regulatory role in tissues and cells of multiple systems by means of participation in cell differentiation, apoptosis, metabolism, mitochondrial homeostasis, and other processes. Although research on Nur77 in the pathophysiology of the central nervous system (CNS) is currently limited, the present data support the fact that Nur77 is involved in many neurological disorders such as stroke, multiple sclerosis, Parkinson's disease. This indicates that activation of Nur77 has considerable potential in treating these diseases. This review summarizes the regulatory mechanisms of Nur77 in CNS diseases and presents available evidence for its potential as targeted therapy, especially for cerebrovascular and inflammationrelated CNS diseases.
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy and shows clinical and genetic heterogeneity. Mutations in C1orf194 encoding a Ca2+ regulator in neurons and Schwann cells have been reported previously by us to cause CMT disease. In here, we further investigated the function and pathogenic mechanism of C1or194 by generating C1orf194 knockout (KO) mice. Homozygous mutants of C1orf194 mice exhibited incomplete embryonic lethality, characterized by differentiation abnormalities and stillbirth on embryonic days 7.5-15.5. Heterozygous and surviving homozygous C1orf194 KO mice developed motor and sensory defects at the age of 4 months. Electrophysiologic recordings showed decreased compound muscle action potential and motor nerve conduction velocity in the sciatic nerve of C1orf194-deficient mice as a pathologic feature of dominant intermediate-type CMT. Transmission electron microscopy analysis revealed demyelination and axonal atrophy in the sciatic nerve as well as swelling and loss of mitochondrial matrix and other abnormalities in axons and Schwann cells. A histopathologic examination showed a loss of motor neurons in the anterior horn of the spinal cord and muscle atrophy. Shorter internodal length between nodes of Ranvier and Schmidt-Lanterman incisures was detected in the sciatic nerve of affected animals. These results indicate that C1orf194 KO mice can serve as an animal model of CMT with a severe dominant intermediate CMT phenotype that can be used to investigate the molecular mechanisms of the disease and evaluate the efficacy of therapeutic strategies.
Glia-mediated neuroinflammation is related to brain injury exacerbation after cerebral ischemia/reperfusion (I/R) injury. Astrocytic hemichannels or gap junctions, which were mainly formed by connexin-43, have been implicated in I/R damage. However, the exact roles of astrocytic hemichannels and gap junction in neuroinflammatory responses induced by I/R injury remain unknown. Primary cultured astrocytes were subjected to OGD/R injury, an in vitro model of I/R injury. Salvianolic acid B (SalB) or carbenoxolone (CBX) were applied for those astrocytes. Besides, Cx43 mimetic peptides Gap19 or Gap26 were also applied during OGD/R injury; Cx43 protein levels were determined by western blot and cytoimmunofluorescene staining, hemichannel activities by Ethidium bromide uptake and ATP concentration detection, and gap junction intercellular communication (GJIC) permeability by parachute assay. Further, astrocyte-conditioned medium (ACM) was collected and incubated with microglia. Meanwhile, ATP or apyrase were applied to explore the role of ATP during OGD/R injury. Microglial activation, M1/M2 phenotypes, and M1/M2-related cytokines were detected. Also, microglia-conditioned medium (MEM) was collected and incubated with astrocytes to further investigate its influence on astrocytic hemichannel activity and GJIC permeability. Lastly, effects of ACM and MCM on neuronal viability were detected by flow cytometry. We found that OGD/R induced abnormally opened hemichannels with increased ATP release and EtBr uptake but reduced GJIC permeability. WB tests showed decreased astrocytic plasma membrane's Cx43, while showing an increase in cytoplasma. Treating OGD/R-injured microglia with ATP or OGD/R-ACM induced further microglial activation and secondary pro-inflammatory cytokine release, with the M1 phenotype predominating. Conversely, astrocytes incubated with OGD/R-MCM exhibited increased hemichannel opening but reduced GJIC coupling. Both SalB and CBX inhibited abnormal astrocytic hemichannel opening and ATP release and switched the activated microglial phenotype from M1 to M2, thus providing effective neuroprotection. Application of Gap19 or Gap26 showed similar results with CBX. We also found that OGD/R injury caused both plasma membrane p-Cx43(Ser265) and p-Src(Tyr416) significantly upregulated; application of SalB may be inhibiting Src kinase and attenuating Cx43 internalization. Meanwhile, CBX treatment induced obviously downregulation of p-Cx43(Ser368) and p-PKC(Ser729) protein levels in plasma membrane. We propose a vicious cycle exists between astrocytic hemichannel and microglial activation after OGD/R injury, which would aggravate neuroinflammatory responses and neuronal damage. Astrocytic Cx43, hemichannels, and GJIC play critical roles in OGD/R injury-induced neuroinflammatory responses; treatment differentially targeting astrocytic Cx43, hemichannels, and GJIC may provide novel avenues for therapeutics during cerebral I/R injury.
To assess the diagnostic ability of peripapillary vessel density (pVD) in primary open-angle glaucoma suspect (GS) patients. Sixteen primary open-angle GS patients (22 eyes) and 20 normal controls (22 eyes) were included. In the GS group, OCTA measurements of pVD (superior, inferior, nasal, temporal, and global), OCT measurements of retinal nerve fiber layer (RNFL) thickness, disc area, rim area and ganglion cell complex (GCC) thickness were examined. In the control group, pVD measurements were performed. The vessel density between the two groups was compared. The correlation between OCTA and OCT parameters was evaluated. The receiver operating characteristic curve (ROC) was used to evaluate the diagnostic efficacy of OCTA measurements. The global (P<0.001), nasal (P=0.003), and inferior (P=0.002) quadrant pVD in GS group was considerably lower than the control group. The global pVD was positively correlated with the inferior RNFL thickness (r=0.492, P=0.023) and rim area (r=0.483, P=0.027). The inferior pVD was positively correlated with the inferior RNFL thickness (r=0.648, P=0.001), the nasal RNFL thickness (r=0.441, P=0.045), the rim area (r=0.439, P=0.046) and the GCC thickness (r=0.472, P=0.048). The global pVD had the best diagnostic value (AUC=0.825, sensitivity 86.36%, specificity 72.73%, cutoff value 45%), followed by the inferior (AUC=0.749) and nasal (AUC=0.748) quadrant pVD. In primary open-angle GS patients, the global and inferior quadrant pVD was lower than that of normal people, and it was positively correlated with the inferior RNFL thickness and rim area. The diagnostic value of pVD for discriminating GS from normal people was excellent with high sensitivity and specificity.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI
It is essential for neuroscience and clinic to estimate the influence of neuro-intervention after brain damage. Most related studies have used Mirrored Contralesional-Ipsilesional hemispheres (MCI) methods flipping the axial neuroimaging on the x-axis in prognosis prediction. But left-right hemispheric asymmetry in the brain has become a consensus. MCI confounds the intrinsic brain asymmetry with the asymmetry caused by unilateral damage, leading to questions about the reliability of the results and difficulties in physiological explanations. We proposed the Separated Left-Right hemiplegia (SLR) method to model left and right hemiplegia separately. Two pipelines have been designed in contradistinction to demonstrate the validity of the SLR method, including MCI and removing intrinsic asymmetry (RIA) pipelines. A patient dataset with 18 left-hemiplegic and 22 right-hemiplegic stroke patients and a healthy dataset with 40 subjects, age- and sex-matched with the patients, were selected in the experiment. Blood-Oxygen Level-Dependent MRI and Diffusion Tensor Imaging were used to build brain networks whose nodes were defined by the Automated Anatomical Labeling atlas. We applied the same statistical and machine learning framework for all pipelines, logistic regression, artificial neural network, and support vector machine for classifying the patients who are significant or non-significant responders to brain-computer interfaces assisted training and optimal subset regression, support vector regression for predicting post-intervention outcomes. The SLR pipeline showed 5-15% improvement in accuracy and at least 0.1 upgrades in [Formula: see text], revealing common and unique recovery mechanisms after left and right strokes and helping clinicians make rehabilitation plans.