Radon, helium and uranium measurements have been carried out in hot water springs in the Parbati and Beas valleys of Himachal Himalaya. Most of these hot springs are known as famous pilgrimage centers. The activity of dissolved radon in the liquid phase is found to vary widely, by an order of magnitude, between 10 and 750 Bq L(-1), whereas, the dissolved helium content in these thermal springs varies between 10 and 100 ppm. The uranium contents are low and vary from <0.01 to 5 microg L(-1). The measured values of radon, helium and uranium are possibly controlled by structural geology, namely the presence of pervious fault systems, and by the lithology of the leached host rocks. Redox-potential geochemical barriers cause the mobilization of uranile ions in solution (UO2+); the most plausible hypothesis is when the conditions are oxidising, confirming the importance of physico-chemical conditions up to the supergenic environment, to control the fluid geochemistry of the U-He-222Rn system. Some evidence is available from both geothermometric considerations and geochemical data which will be reported elsewhere, whereas the present study is focused on U decay series-noble gas geochemistry. The first analysis of collected 3He/4He data is consistent with a crustal signature at the studied thermal springs.
Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan, where many hot springs and mud volcanoes are distributed along with tectonic structures, show significant variation before and after some disaster seismic events. Such variations, including radon activity, CH 4 /CO 2 , and 3 He/ 4 He ratios of gas compositions, are considered precursors of earthquakes in this area. An automatic system for continuous on-line gas monitoring and groundwater sampling was established at Yun-Shui (YS), where an artesian well located at an active fault zone in SW Taiwan, to validate the relationship between fluid compositions and seismicity. It is equipped with a quadrupole mass spectrometer (QMS) and a radon detector for in-situ measurement of the dissolved gas composition. Variations of dissolved gas compositions are transmitted to the laboratory through the internet. Furthermore, a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) is also installed for off-line laboratory analysis for obtaining the detailed time-series records of helium, hydrogen, oxygen, and dissolved inorganic carbon (DIC) isotopic compositions as well as dissolved inorganic carbon and chloride concentration of water samples at this station. After continuous monitoring for several months, two substantial anomalies of multiparameter were observed prior to the significant earthquakes. This automated system has been demonstrated to be feasible for long-term continuous seismo-geochemical research in this area.
Abstract This paper mainly discusses the timing of the Karakorum strike‐slip fault, and gives a brief introduction of its structures, offset, and deformational style. This fault strikes NNW‐SSE. Asymmetrical folds, stretching lineation, S‐C fabrics, feldspar and quartz s̀‐porphyroclasts, domino structure, shear cleavages and faults in the fault zone are products of tectonic movements. They all indicate a dextral slip sense of faulting. Mylonitic bands are widely developed along this fault. Phengite appears, indicating rather high deformational pressure. Geochronological data indicate that the Karakorum strike‐slip faulting occurred from 6.88±0.36 to 8.75±0.25 Ma. The cumulative displacement from Muztag Ata to Muji is about 135 km.
Abstract To systematically quantify the production, consumption, and migration of methane, 210 sediment cores were collected from offshore southwestern Taiwan and analyzed for their gas and aqueous geochemistry. These data, combined with published results, were used to calculate the diffusive methane fluxes across different geochemical transitions and to develop scenarios of mass balance and constrain deep microbial and thermogenic methane production rates within the accretionary prism. The results showed that methane diffusive fluxes ranged from 2.71 × 10 −3 to 2.78 × 10 −1 and from –1.88 × 10 −1 to 3.97 mmol m −2 d −1 at the sulfate‐methane‐transition‐zone (SMTZ) and sediment‐seawater interfaces, respectively. High methane fluxes tend to be associated with structural features, suggesting a strong structural control on the methane transport. A significant portion of ascending methane (>50%) is consumed by anaerobic oxidation of methane at the SMTZ at most sites, indicating effective biological filtration. Gas compositions and isotopes revealed a transition from the predominance of microbial methane in the passive margin to thermogenic methane at the upper slope of the active margin and onshore mud volcanoes. Methane production and consumption at shallow depths were nearly offset with a small fraction of residual methane discharged into seawater. The flux imbalance arose primarily due to the larger production of methane through deep microbial and thermogenic processes at a magnitude of 1512–43,096 Tg Myr −1 and could be likely accounted for by the sequestration of methane into hydrate forms, and clay absorption.
The latest catastrophic earthquake in Japan (March 2011) has renewed interest in the important question of the existence of pre-earthquake anomalous signals related to strong earthquakes. Recent studies have shown that there were precursory atmospheric/ionospheric signals observed in space associated with major earthquakes. The critical question, still widely debated in the scientific community, is whether such ionospheric/atmospheric signals systematically precede large earthquakes. To address this problem we have started to investigate anomalous ionospheric / atmospheric signals occurring prior to large earthquakes. We are studying the Earth's atmospheric electromagnetic environment by developing a multisensor model for monitoring the signals related to active tectonic faulting and earthquake processes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, lineament analysis, radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. A physical link between these parameters and earthquake processes has been provided by the recent version of Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model. Our experimental measurements have supported the new theoretical estimates of LAIC hypothesis for an increase in the surface latent heat flux, integrated variability of outgoing long wave radiation (OLR) and anomalous variations of the total electron content (TEC) registered over the epicenters. Some of the major earthquakes are accompanied by an intensification of gas migration to the surface, thermodynamic and hydrodynamic processes of transformation of latent heat into thermal energy and with vertical transport of charged aerosols in the lower atmosphere. These processes lead to the generation of external electric currents in specific regions of the atmosphere and the modifications, by dc electric fields, in the ionosphere-atmosphere electric circuit. We retrospectively analyzed temporal and spatial variations of four different physical parameters (gas/radon counting rate, lineaments change, long-wave radiation transitions and ionospheric electron density/plasma variations) characterizing the state of the lithosphere/atmosphere coupling several days before the onset of the earthquakes. Validation processes consist in two phases: A. Case studies for seven recent major earthquakes: Japan (M9.0, 2011), China (M7.9, 2008), Italy (M6.3, 2009), Samoa (M7, 2009), Haiti (M7.0, 2010) and, Chile (M8.8, 2010) and B. A continuous retrospective analysis was preformed over two different regions with high seismicity- Taiwan and Japan for 2003-2009. Satellite, ground surface, and troposphere data were obtained from Terra/ASTER, Aqua/AIRS, POES and ionospheric variations from DEMETER and COSMIC-I data. Radon and GPS/TEC were obtaining from monitoring sites in Taiwan, Japan and Italy and from global ionosphere maps (GIM) respectively. Our analysis of ground and satellite data during the occurrence of 7 global earthquakes has shown the presence of anomalies in the atmosphere. Our results for Tohoku M9.0 earthquake show that on March 7th, 2011 (4 days before the main shock and 1 day before the M7.2 foreshock of March 8, 2011) a rapid increase of emitted infrared radiation was observed by the satellite data and an anomaly was developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. Similar approach for analyzing atmospheric and ionospheric parameters has been applied for China (M7.9, 2008), Italy (M6.3, 2009), Samoa (M7, 2009), Haiti (M7.0, 2010) and Chile (M8.8, 2010) eahquakes. Results have revealed the presence of related variations of these parameters implying their connection with the earthquake process. The second phase (B) of this validation included 102 major earthquakes (M>5.9) in Taiwan and Japan. We have found anomalous behavior before all of these events with no false negatives. False alarm ratio for false positives is less then 10% and has been calculated for the same month of the earthquake occurrence for the entire period of analysis (2003-2009). The commonalities for detecting atmospheric/ionospheric anomalies are: i.) Regularly appearance over regions of maximum stress (i.e., along plate boundaries); ii.) Anomaly existence over land and sea; and iii) association with M>5.9 earthquakes not deeper than 100km. Due to their long duration over the same region these anomalies are not consistent with a meteorological origin. Our initial results from the ISTF validation of multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area, one to seven (average) days prior to the largest earthquakes, and suggest that it could be explained by a coupling process between the observed physical parameters and the pre-earthquake preparation processes.