Virus-induced gene silencing (VIGS) is an important tool for gene function analysis in plants. In the present study, the function identification of a candidate gene named Tadhn1312 encoding Dehydrin protein obtained from the high-throughput transcriptome was carried out by VIGS. Leaves appeared the chlorotic phenotype and the transcript level of TaPDS decreased rapidly at 7 days after the inoculation by BSMV: TaPDS, which indicated that the virus had successfully infected wheat leaves and the BSMV system was efficient. The chlorophyll content of leaves with BSMV: TaPDS and BSMV: Tadhn1312 inoculation decreased at 7 days, and reached significant level compared with the control. After the inoculation by BSMV: Tadhn1312, the transcript level of Tadhn1312 was rapidly decreased at 7 days, and reached the minimum value at 21 days, indicated that Tadhn1312 had been silenced. The spike differentiation procession of wheat plants inoculated by BSMV: Tadhn1312 was late than that inoculated by BSMV: 00. The result showed that the silencing of Tadhn1312 prolonged the spike differentiation process, illustrating that Tadhn1312 gene was involved in the spike differentiation process of wheat directly or indirectly.
We propose a novel scheme of high doped core and stairway-index trench structure to design a manufacturable graded-index 13-core 5-LP mode fiber with low inter-core crosstalk (ICXT) and large mode differential group delay (MDGD). By using the couple power theory and the finite element method (FEM), the change ICXT of with fiber parameters are investigated. The design of core graded profile and trench structure are optimized to achieve better performance and to meet the fabrication conditions. The numerical result demonstrate that this fiber achieves a low ICXT of lower than −30dB/km ( R b ≤500 mm). The bending loss values satisfy the ITU-T recommendation G.655 in 195 µm cladding diameter. Furthermore, the dispersion and the MDGD dependences on wavelength are calculated. The relative core multiplicity factor (RCMF) is obtained as 75.17, which realizes the high density multiplexing. The fabrication methods of this fiber are briefly introduced. The designed fiber may be used for Space-division multiplexing (SDM) system to solve the problem of fiber capacity limitation.
Analyzing the transcriptome of maize leaves under drought stress and rewatering conditions revealed that transcription factors were involved in this process, among which ZmbZIP33 of the ABSCISIC ACID-INSENSITIVE 5-like protein 5 family was induced to significantly up-regulated. The functional mechanism of ZmbZIP33 in Abscisic acd (ABA) signaling pathway and its response to drought stress and rewatering has not been studied yet. The present study found that ZmbZIP33 contains a DNA-binding and dimerization domain, has transcriptional activation activity, and is highly homologous to SbABI1,SitbZIP68 and OsABA1. The expression of ZmbZIP33 is strongly up-regulated by drought, high salt, high temperature, and ABA treatments. Overexpression of ZmbZIP33 remarkably increased chlorophyll content and root length after drought stress and rewatering, and, moreover, cause an accumulation of ABA content, thereby improving drought resistance and recovery ability in Arabidopsis. However, silencing the expression of ZmbZIP33 (BMV-ZmbZIP33) remarkably decreased chlorophyll content, ABA content, superoxide dismutase and peroxidase activities, and increased stomatal opening and water loss rate compared with BMV (control). It showed that silencing ZmbZIP33 lead to reduced drought resistance and recovery ability of maize. ABA sensitivity analysis found that 0.5 and 1 μmol/L treatments severely inhibited the root development of overexpression ZmbZIP33 transgenic Arabidopsis. However, the root growth of BMV was greatly inhibited for 1 and 5μmol/L ABA treatments, but not for BMV-ZmbZIP33. Subcellular localization, yeast two-hybrid and BIFC further confirmed that the core components of ABA signaling pathways ZmPYL10 and ZmPP2C7 interacted in nucleus, ZmPP2C7 and ZmSRK2E as well as ZmSRK2E and ZmbZIP33 interacted in the plasma membrane. We also found that expression levels of ZmPYL10 and ZmSRK2E in the BMV-ZmbZIP33 mutant were lower than those of BMV, while ZmPP2C7 was the opposite under drought stress and rewatering. However, expression of ZmPYL10 and ZmSRK2E in normal maize leaves were significantly up-regulated by 3-4 folds after drought and ABA treatments for 24 h, while ZmPP2C7 was down-regulated. The NCED and ZEP encoding key enzymes in ABA biosynthesis are up-regulated in overexpression ZmbZIP33 transgenic line under drought stress and rewatering conditions, but down-regulated in BMV-ZmbZIP33 mutants. Together, these findings demonstrate that ZmbZIP33 played roles in ABA biosynthesis and regulation of drought response and rewatering in Arabidopsis and maize thought an ABA-dependent signaling pathway.
OSCAs are hyperosmolality-gated calcium-permeable channel proteins. In this study, two co-expression modules, which are strongly associated with maize proline content, were screened by weighted correlation network analysis, including three ZmOSCA family members. Phylogenetic and protein domain analyses revealed that 12 ZmOSCA members were classified into four classes, which all contained DUF221 domain. The promoter region contained multiple core elements responsive to abiotic stresses and hormones. Colinear analysis revealed that ZmOSCAs had diversified prior to maize divergence. Most ZmOSCAs responded positively to ABA, PEG, and NaCl treatments. ZmOSCA2.3 and ZmOSCA2.4 were up-regulated by more than 200-fold under the three stresses, and showed significant positive correlations with proline content. Yeast two-hybrid and bimolecular fluorescence complementation indicated that ZmOSCA2.3 and ZmOSCA2.4 proteins interacted with ZmEREB198. Over-expression of ZmOSCA2.4 in Arabidopsis remarkably improved drought resistance. Moreover, over-expression of ZmOSCA2.4 enhanced the expression of drought tolerance-associated genes and reduced the expression of senescence-associated genes. We also found that perhaps ZmOSCA2.4 was regulated by miR5054.The results provide a high-quality molecular resource for selecting resistant breeding, and lay a foundation for elucidating regulatory mechanism of ZmOSCA under abiotic stresses.
Abstract Backgrounds: Drought stress is one of the major factors that affects maize yield. ZF-HD transcription factors have been proved to play pivotal roles in the regulation of plant growth, hormone conduction signaling and abiotic stress response. However, the molecular mechanism of ZmZHD9 -mediated drought tolerance is not well understood. Results: In the present study, we analyzed the functions of ZmZHD9 , a member of the maize ZF-HD family. ZmZHD9 is predominantly expressed in leaves, and was induced by drought, salinity, high temperature and abscisic acid (ABA). Subcellular localization indicated that ZmZHD9 protein was localized in the nucleus. ZmZHD9 -overexpressing plants showed increased tolerance to drought stress compared with wild-type plants, evaluated by higher RWC and proline content, higher SOD and POD activity, lower REL and MDA content in transgenic plants under drought stress. In addition, the expression of six stress-responsive genes were significantly higher in ZmZHD9 transgenic plants than that in wild-type plants under drought stress. Conclusion: These results demonstrate that ZmZHD9 as a stress-responsive transcription factor which plays a positive regulatory role in response to drought.
Abstract Using small baseline subset InSAR (SBAS-InSAR) technology and multi-temporal synthetic aperture radar data, multitemporal phase and long-term sequential deformation monitoring and early identification of geological hazards were carried out in the loess hilly area of southern Ningnan-Yuanzhou area. Based on the analysis of radar visibility in the loess hilly area of southern Ningxia. The Sentinel-1A historical archived data of 36 periods from January 2019–December 2021 and descending orbit data from January 2019–May 2021 were used to carry out monitoring of surface deformation in the river basin, and a total of 61 hidden danger. 49 new concealed high risk points were identified by comprehensive optical remote sensing interpretation. The annual average deformation rate of the radar line-of-sight direction of the ascent data was -47.6746–71.6472mm/a, and the cumulative deformation variable was -81.20–121.61mm. There were 23 new concealed high risk points identified. The annual average deformation rate was -72.1574–51.6028mm/a, and the cumulative deformation variable was -165.6–112.4 mm. During the descending orbit, there were 21 obvious deformations and 16 newly discovered geological hazards. Taking a group of ascending orbit deformation zones in Yuanzhou District as an example, which proved that the application of SBAS-InSAR technology in the loess hilly area of Ningnan was feasible.