The study aimed to develop a pulmonary circulatory system capable of high-speed 3D reconstruction of valve leaflets to elucidate the local hemodynamic characteristics in the valved conduits with bulging sinuses. Then a simultaneous measurement system for leaflet structure and pressure and flow characteristics was designed to obtain valve leaflet dynamic behaviour with different conduit structures. An image preprocessing method was established to obtain the three leaflets behaviour simultaneously for one sequence with two leaflets images from each pair of three high-speed cameras. Firstly, the multi-digital image correlation analyses were performed, and then the valve leaflet structure was measured under the static condition with fixed opening angles in the water-filled visualization chamber and the pulsatile flow tests simulating paediatric pulmonary flow conditions in the different types of conduit structures; with or without bulging sinuses. The results showed the maximum 3D reconstruction error to be around 0.06 mm. In the steady flow test, the evaluation of opening angles under the different flow rates conditions was achieved. In the pulsatile flow test, each leaflet's opening and closing behaviours were successfully reconstructed simultaneously at the high-frequency recording rate of 960fps. Therefore, the system developed in this study confirms the design evaluation method of an ePTFE valved conduit behaviour with leaflet structures interacting with local fluid dynamics in the vicinity of valves. Clinical Relevance— The system reveals the bulging sinus effects on ePTFE valve leaflet motion by the 3D reconstruction using multi-camera high-speed sequential imaging in vitro
There is a need for small diameter vascular substitutes in the absence of available autologous material. A small diameter, long tissue engineered vascular graft was developed using a completely autologous approach called "in body tissue architecture technology (iBTA)". The aim of this pilot study was to evaluate "Biotubes", iBTA induced autologous collagenous tubes, for their potential use as small diameter vascular bypass conduits.Biotubes (internal diameter 4 mm, length 50 cm, wall thickness 0.85 mm) were prepared by subcutaneous embedding of plastic moulds (Biotube Maker) in three goats for approximately two months. Allogenic Biotubes (length 10 cm [n = 2], 15 cm [n = 2], 22 cm [n = 2]) were bypassed to both carotid arteries by end to side anastomosis with their ligation between the anastomoses in another three goats. Residual Biotubes were examined for their mechanical properties. After four weeks, the harvested Biotubes were evaluated histologically.All Biotubes had sufficient pressure resistance, approximately 3000 mmHg. Although wall thickening occurred at two proximal anastomosis sites, all six grafts were patent without luminal thrombus formation, stenosis, or aneurysm deformation throughout the implantation period. Endothelial cells covered both anastomosis sites almost completely, with partial covering in the central portion of the grafts. Furthermore, α smooth muscle actin positive cells infiltrated the middle layer along almost the entire graft length.This preliminary study showed that small diameter, long, tissue engineered Biotubes could function properly as arterial bypass conduits in a large animal for one month without any abnormal change in vascular shape. Thus, small diameter, long Biotubes are potentially viable conduits, which are biocompatible and labour non-intensive, and therefore, suitable for clinical practice. Additionally, Biotubes can start the regeneration process in a short period of time.
Roller pumps are widely used as one of the cardiopulmonary bypasses during open-heart surgery. Hemolysis may cause acute kidney injury due to the changes in the tubing gap by the occlusion of roller pumps. In this study, we achieved the 3-D evaluation of the roller pump tubing gap for the first time by our originally developed visualization analysis. We examined the leak rate and the hemolysis under the 240-min circulatory support condition in a mock flow tester, and compared the tubing gap dimensions. As a result, the primary leak rate around 0.8 mL/min against 1 mH2O afterload significantly decreased after 60-min circulation, and there was no leak rate detected for 10 minutes measurement afterwards. The 3-D tubing gaps indicated that the subsidiary opening width at the short-axis edge decreased by more flattening shapes. Moreover, plasma free hemoglobin levels showed a remarkable increase at 60-min after the pump start, although there was no discernible difference in the incremental ratio of hemolysis following 240-min support. Therefore, our findings suggest that the leak rate and hemolysis are to be considered by the primary occlusion settings as well as the time-varying gap deformation for longer use of roller pumps.
Two-dimensional images by X-rays or particles in the inertial confinement fusion (ICF) experiments are digitally processed in a short period of time. Using a minicomputer image processing system, we find that such digital image processings as local average, gray scale transformation, level slice, two-dimensional intensity profile display, histogram equalization and pseudo-color display are useful for those ICF images. And, tomographic features of URA (uniformly redundant arrays) camera are investigated by computer simulation. According to calculation, URA camera will be useful for plane-like or small targets because of its brightness and high S/N.
Improving the inflow characteristics of the right ventricular function and pulmonary circulatory hemodynamics was essential for more precise evaluation of newly designed heart valves. To examine a pulmonary hemodynamics, the authors have been developing a pulmonary mechanical mock circulatory system. In this study, the pneumatically driven right atrium model was newly developed for clarifying the effect of atrial contraction on the dynamic behavior of pulmonary prosthetic valves. We focused on the hemodynamic behavior of the outflow mechanical heart valve of the right ventricle that could be affected by the right atrial dynamic motion. A medical-grade bileaflet valve was employed and installed into the outflow portion of the right ventricle model and examined its changes in hemodynamic behavior caused by the active right atrial contraction. With the active atrial contraction, hemodynamic waveforms of either the right ventricle or atrium were obtained using the modified pulmonary mock circulatory system. The characteristics with atrial contraction were well simulated as the natural hemodynamics. The right ventricular output increased by around 5% and the peak regurgitant flow at the moment of valve closing significantly decreased by the presence of the atrial contraction. Our mechanical circulatory system could simulate the end-diastolic right ventricular inflow characteristics. We found that the atrial contraction under the low pressure condition such as pulmonary circulation promoted earlier valve closing and prolonged closing duration of prosthetic valve. The simulation of right atrial contraction was important in the quantitative examination of right heart prosthetic valves for congenital heart malformation.