Bone regeneration relies on the activation of skeletal stem cells (SSCs) that still remain poorly characterized. Here, we show that periosteum contains SSCs with high bone regenerative potential compared to bone marrow stromal cells/skeletal stem cells (BMSCs) in mice. Although periosteal cells (PCs) and BMSCs are derived from a common embryonic mesenchymal lineage, postnatally PCs exhibit greater clonogenicity, growth and differentiation capacity than BMSCs. During bone repair, PCs can efficiently contribute to cartilage and bone, and integrate long-term after transplantation. Molecular profiling uncovers genes encoding Periostin and other extracellular matrix molecules associated with the enhanced response to injury of PCs. Periostin gene deletion impairs PC functions and fracture consolidation. Periostin-deficient periosteum cannot reconstitute a pool of PCs after injury demonstrating the presence of SSCs within periosteum and the requirement of Periostin in maintaining this pool. Overall our results highlight the importance of analyzing periosteum and PCs to understand bone phenotypes.
Abstract The role of the thymus in T cell commitment of hemopoietic precursor is yet controversial. We previously identified a major T cell progenitor activity in precursor cells isolated from bone marrow-derived spleen colonies. In this study, we characterize the properties of these pre-T cells. We demonstrate that they have unique phenotype and can be generated in a total absence of any thymic influence. Indeed, even when studied at the single-cell level, extrathymic T cell-committed precursors express T cell-specific genes. Moreover, these cells are not committed to a particular T cell differentiation pathway because they can generate both extrathymic CD8αα+ intraepithelial lymphocytes and thymus-derived conventional thymocytes. We also compared these pre-T cells with fully T cell-committed thymic progenitors. When tested in vitro or by direct intrathymic transfer, these cells have a low clonogenic activity. However, after i.v. transfer, thymus repopulation is efficient and these precursors generate very high numbers of peripheral T cells. These results suggest the existence of extra steps of pre-T cell maturation that improve thymus reconstitution capacity and that can be delivered even after full T cell commitment. Consequently, our studies identify a source of extrathymic progenitors that will be helpful in defining the role of the thymus in the earliest steps of T cell differentiation.
Abstract CD4+CD25+ regulatory T cells have been extensively studied during the last decade, but how these cells exert their regulatory function on pathogenic effector T cells remains to be elucidated. Naive CD4+ T cells transferred into T cell-deficient mice strongly expand and rapidly induce inflammatory bowel disease (IBD). Onset of this inflammatory disorder depends on IFN-γ production by expanding CD4+ T cells. Coinjection of CD4+CD25+ regulatory T cells protects recipient mice from IBD. In this study, we show that CD4+CD25+ regulatory T cells do not affect the initial activation/proliferation of injected naive T cells as well as their differentiation into Th1 effectors. Moreover, naive T cells injected together with CD4+CD25+ regulatory T cells into lymphopenic hosts are still able to respond to stimuli in vitro when regulatory T cells are removed. In these conditions, they produce as much IFN-γ as before injection or when injected alone. Finally, when purified, they are able to induce IBD upon reinjection into lymphopenic hosts. Thus, prevention of IBD by CD4+CD25+ regulatory T cells is not due to deletion of pathogenic T cells, induction of a non reactive state (anergy) among pathogenic effector T cells, or preferential induction of Th2 effectors rather than Th1 effectors; rather, it results from suppression of T lymphocyte effector functions, leading to regulated responses to self.
Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-βH2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-βH2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation.
The human peripheral B cell compartment displays a large population of IgMIgDCD27 “memory” B cell carrying a mutated Ig receptor. We show here, by phenotypic analysis, CDR3 spectratyping during a T-independent response and gene expression profiling of the different blood and splenic B cell subsets, that blood IgMIgDCD27 cells correspond to circulating splenic marginal zone B cells. Furthermore, analysis of this peripheral subset in normal children below 2 years shows that these B cells develop and mutate their Ig receptor during ontogeny, prior to their differentiation into Tindependent antigen-responsive cells. It is therefore proposed that these IgMIgDCD27 B cells provide the splenic marginal zone with a diversified and protective pre-immune repertoire in charge of the responses against encapsulated bacteria.
Bone regeneration relies on the activation of skeletal stem cells (SSCs) that still remain poorly characterized. Here, we show that periosteum contains SSCs with high bone regenerative potential compared to bone marrow stromal cells/skeletal stem cells (BMSCs) in mice. Although periosteal cells (PCs) and BMSCs are derived from a common embryonic mesenchymal lineage, postnatally PCs exhibit greater clonogenicity, growth and differentiation capacity than BMSCs. During bone repair, PCs can efficiently contribute to cartilage and bone, and integrate long-term after transplantation. Molecular profiling uncovers genes encoding Periostin and other extracellular matrix molecules associated with the enhanced response to injury of PCs. Periostin gene deletion impairs PC functions and fracture consolidation. Periostin-deficient periosteum cannot reconstitute a pool of PCs after injury demonstrating the presence of SSCs within periosteum and the requirement of Periostin in maintaining this pool. Overall our results highlight the importance of analyzing periosteum and PCs to understand bone phenotypes.
Abstract Natural regulatory T cells (Tregs) are present in high frequencies among tumor-infiltrating lymphocytes and in draining lymph nodes, supposedly facilitating tumor development. To investigate their role in controlling local immune responses, we analyzed intratumoral T cell accumulation and function in the presence or absence of Tregs. Tumors that grew in normal BALB/c mice injected with the 4T1 tumor cell line were highly infiltrated by Tregs, CD4 and CD8 cells, all having unique characteristics. Most infiltrating Tregs expressed low levels of CD25Rs and Foxp3. They did not proliferate even in the presence of IL-2 but maintained a strong suppressor activity. CD4 T cells were profoundly anergic and CD8 T cell proliferation and cytotoxicity were severely impaired. Depletion of Tregs modified the characteristics of tumor infiltrates. Tumors were initially invaded by activated CD4+CD25− T cells, which produced IL-2 and IFN-γ. This was followed by the recruitment of highly cytotoxic CD8+ T cells at tumor sites leading to tumor rejection. The beneficial effect of Treg depletion in tumor regression was abrogated when CD4 helper cells were also depleted. These findings indicate that the massive infiltration of tumors by Tregs prevents the development of a successful helper response. The Tregs in our model prevent Th cell activation and subsequent development of efficient CD8 T cell activity required for the control of tumor growth.
Dendritic cells (DC) have been reported to migrate in afferent lymph in the steady state. However, it is unknown whether DC traffic is modulated by the nature of the drained tissue. To analyze the influence of mucosal versus cutaneous microenvironments on the constitutive DC release, we exploited a novel technique of lymph cannulation in sheep, which allowed a comparison of afferent lymph DC migrating from the head mucosae [cervical DC (CerDC)] with DC migrating from skin [prescapular DC (PresDC)]. The migration rate was lower for CerDC than for PresDC. Compared with PresDC, CerDC contained a higher proportion of the CD26hi signal regulatory protein (SIRP)- DC subset. It is interesting that cytoplasmic apoptotic DNA as well as cytokeratin-positive inclusions were primarily detected among CD26hi SIRP- DC, an observation similar to that made in rats, which leads to the suggestion that this subset was involved in self-antigen presentation and tolerance induction. After the inoculation of cholera toxin (CT) onto the oro-nasal mucosae, migration of CD26hi SIRP- and CD26lo SIRP+ DC was accelerated in lymph, indicating that the effect of CT on DC mobilization is not subset-specific. Our results show that a mucosal environment influences DC output and the relative DC subset representation in lymph. This modulation of DC traffic to lymph nodes by mucosal surfaces is likely to affect the bias of the mucosal immune responses.