To study the utility of Galactomannan (GM) antigen as a screening marker for diagnosing invasive pulmonary aspergillosis (IPA) in coronavirus disease 2019 (COVID-19) patients.The serum samples from patients with severe COVID-19 diseases admitted to the Critical Care Unit were collected on the 5th day of admission for GM screening. The samples were analysed by enzyme linked immune sorbent assay (ELISA) and GM index of more than 1 was considered as positive. All GM positive patients were serially followed until discharge or death.The GM was raised in serum of 12 out of 38 patients, indicating an incidence of possible COVID-19 associated IPA (CAPA) in 31.57% of patients. The median age of these CAPA patients was 56.5 years, males were significantly more affected than females. The inflammatory marker serum ferritin was raised in all 12 patients (median value of 713.74 ng/ml), while IL-6 was raised in 9 patients (median value of 54.13 ng/ml). None of these patients received antifungals. Their median length of hospital stay was 20 days (IQR: 12, 34 days). All these patients succumbed to the illness.The serum GM appears to be sensitive diagnostic tool to identify early IPA in COVID-19 patients and pre-emptive antifungal therapy could play a role in salvaging these patients.
The objective of this study was to assess if avibactam, a new β-lactamase inhibitor, can restore the potency of carbapenems, a sub-class of β-lactams, against Mycobacterium abscessus clinical isolates.28 M. abscessus clinical isolates that are resistant to multiple drugs currently used to treat its infection were included. MIC of carbapenems alone and in combination with avibactam against these strains were determined.Tebipenem, an oral carbapenem, and ertapenem and panipenem exhibited the greatest shift in MIC when supplemented with avibactam.Avibactam restores MICs of tebipenem, ertapenem and panipenem against M. abscessus to therapeutically achievable concentrations and raises the possibility of usefulness of these carbapenems to treat drug-resistant M. abscessus infections.
Abstract Mycobacterium abscessus (MAB) is an emerging pathogen that leads to chronic lung infections. To date, the global population structure of non-cystic fibrosis (CF) MAB and evolutionary patterns of drug resistance emergence have not been investigated. Here we construct a global dataset of 1,279 MAB whole genomes from CF or non-CF patients. We utilize whole genome analysis to assess relatedness, phylogeography, and drug resistance evolution. MAB isolates from CF and non-CF hosts are interspersed throughout the phylogeny, such that the majority of dominant circulating clones include isolates from both populations, indicating that global spread of MAB clones is not sequestered to CF contexts. We identify a large clade of M. abscessus harboring the erm (41) T28C mutation, predicted to confer macrolide susceptibility in this otherwise macrolide-resistant species. Identification of multiple evolutionary events within this clade, consistent with regain of wild type, intrinsic macrolide resistance, underscores the critical importance of macrolides in MAB.
Bioavailability of co-trimoxazole suspension was determined with and without concurrent administration of pectin and kaolin in 8 volunteers. Twenty ml suspension of co-trimoxazole containing 160 mg trimethoprim (TMP) and 800 mg sulphamethoxazole (SMX) and co-trimoxazole suspension along with 20 ml of pectin-kaolin suspension were administered in a random order with 7 days interval. Plasma estimation of trimethoprim and sulphonamide was carried out at serial intervals. Area under curve (AUC) and Cmax of TMP were significantly higher when co-trimoxazole suspension alone was used. No statistically significant changes were observed in case of sulphamethoxazole. Clinical study is necessary to verify whether concurrent administration of co-trimoxazole and pectin-kaolin leads to loss of antibacterial efficacy.
Human CMV, regularly reactivated by simple triggers, results in asymptomatic viral shedding, powerful cellular immune responses, and memory inflation. Immunocompetent individuals benefit from a robust immune response, which aids in viral management without causing clinically significant illness; however, immunodeficient individuals are always at a higher risk of CMV reactivation and disease. Hematopoietic stem cell transplant (HSCT) recipients are consistently at higher risk of CMV reactivation and clinically significant CMV illness due to primary disease, immunosuppression, and graft vs. host disease. Early recovery of CMV-CMI responses may mitigate effects of viral reactivation in HSCT recipients. Immune reconstitution following transplantation occurs spontaneously and is mediated initially by donor-derived T cells, followed by clonal growth of T cells produced from graft progenitors. CMV-specific immune reconstitution post-transplant is related to spontaneous clearance of CMV reactivation and may eliminate the need for prophylactic or pre-emptive medication, making it a potential predictive marker for monitoring CMV reactivation. This review highlights current thoughts and therapeutic options for CMV reactivation in HSCT, with focus on CMV immune reconstitution and post-HSCT monitoring. Immune monitoring aids in risk stratification of transplant recipients who may progress from CMV reactivation to clinically significant CMV infection. Implementing this approach in clinical practice reduces the need for periodic viral surveillance and antiviral therapy in recipients who have a high CMV-CMI and thus may experience self-limited reactivation. Therefore, in the age of precision medicine, it is critical to incorporate CMV-specific cellular immune surveillance into conventional procedures and algorithms for the management of transplant recipients.