A novel nanoenergetic material was prepared by filling KNO 3 in the CNTs through a wet chemical method. The samples were characterized by TEM, XRD, and TG/DSC. The results show that KNO 3 with a mean diameter of ~9 nm were homogeneously filled into CNTs to form KNO 3 @CNTs nEMs. The TG/DSC curves indicate that the reaction enthalpy (ΔH) of KNO 3 @CNTs nEMs was 876.1 J/g and the characteristic temperature of the exothermic peak was 386.8 °C.
Neuropsychiatric manifestations, such as cognitive impairment, are relatively prevalent in systemic sclerosis (SSc) patients. This study aimed to investigate the resting state (RS) functional alternations of SSc patients and the potential influenced factors.
The Chern number is often used to distinguish different topological phases of matter in two-dimensional electron systems. A fast and efficient coupling-matrix method is designed to calculate the Chern number in finite crystalline and disordered systems. To show its effectiveness, we apply the approach to the Haldane model and the lattice Hofstadter model, and obtain the correct quantized Chern numbers. The disorder-induced topological phase transition is well reproduced, when the disorder strength is increased beyond the critical value. We expect the method to be widely applicable to the study of topological quantum numbers.
Diamond-like carbon (DLC) bilayer films with Cu interlayer were prepared on silicon substrate by direct-current and pulsed cathode arc plasma technique, and annealed at various temperatures in vacuum. Structure, morphology and mechanical properties of the bilayer films were investigated by Raman spectroscopy, Auger electron spectroscopy, scanning electron microscopy and atomic force microscopy, surface profilometer and Vickers sclerometer. The results show that Cu interlayer changes the bilayer microstructure, including the thickness and element distribution of diffusion layer, the relative fraction of sp 3 /sp 2 bonding and growth model of bilayer. A simple three-layer model was used to describe the interdiffusion between Cu and C layer. Cu interlayer could be more effective against graphitization upon annealing. Morphological characteristics of the films were studied by analyzing the surface features of substrate. Cu/DLC bilayer exhibits highly dispersed nano-agglomerates with smaller size on the surface due to low surface energy of Cu interlayer. The stress and hardness of the films were affected accordingly. Cu/DLC bilayer shows a relatively high hardness at low annealing temperature but the stress almost no change. By changing Cu interlayer and annealing temperature, excellent DLC films could be designed for the protective, hard, lubricating and wear resistant coatings on mechanical, electronic and optical applications.
Based on the free Hopkinson pressure bar high-g loading technique, the pure cylindrical lead was mounted on the end section of the incident bar as a specimen to obtain the change law of the axial strain with the shape of acceleration pulses. Both the experimental tests without using pulse shaper and numerical simulations under sine-shaped acceleration pulses were performed and axial strain of the specimen was measured. Results revealed that the shape of acceleration pulse shows highly effect on the damage of the specimen. The axial strain of the specimen arises linearly with the increasing of the acceleration peaks whose durations are all 17μs; while, due to the complexity of plastic wave propagation, 135μs is a critical duration at which axial strain reaches to the maximum under the condition of different durations. The final axial strain of the specimen is determined by both the stress level and stress increment in every time step.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.