ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTHydrodesulfurization Reactivities of Narrow-Cut Fractions in a Gas OilXiaoliang Ma, Kinya Sakanishi, Takaaki Isoda, and Isao MochidaCite this: Ind. Eng. Chem. Res. 1995, 34, 3, 748–754Publication Date (Print):March 1, 1995Publication History Published online1 May 2002Published inissue 1 March 1995https://pubs.acs.org/doi/10.1021/ie00042a006https://doi.org/10.1021/ie00042a006research-articleACS PublicationsRequest reuse permissionsArticle Views268Altmetric-Citations81LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
A two-stage hydrotreatment of the two atmospheric residues (LF-AR and KEC-AR) over the MoO3/γ-alumina catalyst at the first stage and the NiMo/γ-alumina catalyst at the second stage was performed. Evolution of various heteroatom classes in the asphaltenes during the hydrotreating process was examined, focusing on removing sulfur and nitrogen species from asphaltenes. Various heteroatom classes (CcHh, CcHh-Ss, CcHh-Nn, CcHh-Oo, CcHh-NnSs, CcHh-OoSs, CcHh-NnOo, and CcHh-NnOoSs) in the asphaltenes were analyzed by using Fourier transfer ion cyclotron mass spectrometry (FT-ICR MS) linked with atmospheric pressure photoionization (APPI). According to the changes of their relative abundance, double bond equivalent (DBE), and the carbon number in the hydrotreating process, behaviors of the various heteroatom classes in the asphaltenes during the hydrotreating process were interpreted. Two distinctive differences in heteroatom reduction were observed for two different AR samples, and qualitative evaluation was attempted for providing possible scenarios.
The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.