Heterosis is a complex biological phenomenon regulated by genetic variations and epigenetic changes. However, the roles of small RNAs (sRNAs), an important epigenetic regulatory element, on plant heterosis are still poorly understood. Here, an integrative analysis was performed with sequencing data from multi-omics layers of maize hybrids and their two homologous parental lines to explore the potential underlying mechanisms of sRNAs in plant height (PH) heterosis. sRNAome analysis revealed that 59 (18.61%) microRNAs (miRNAs) and 64,534 (54.00%) 24-nt small interfering RNAs (siRNAs) clusters were non-additively expressed in hybrids. Transcriptome profiles showed that these non-additively expressed miRNAs regulated PH heterosis through activating genes involved in vegetative growth-related pathways while suppressing those related to reproductive and stress response pathways. DNA methylome profiles showed that non-additive methylation events were more likely to be induced by non-additively expressed siRNA clusters. Genes associated with low-parental expression (LPE) siRNAs and trans-chromosomal demethylation (TCdM) events were enriched in developmental processes as well as nutrients and energy metabolism, whereas genes associated with high-parental expression (HPE) siRNAs and trans-chromosomal methylation (TCM) events were gathered in stress response and organelle organization pathways. Our results provide insights into the expression and regulation patterns of sRNAs in hybrids and help to elucidate their potential targeting pathways contributing to PH heterosis.
Due to insufficient identification and in-depth investigation of existing common bean germplasm resources, it is difficult for breeders to utilize these valuable genetic resources. This situation limits the breeding and industrial development of the common bean (Phaseolus vulgaris L.) in China. Genomic prediction (GP) is a breeding method that uses whole-genome molecular markers to calculate the genomic estimated breeding value (GEBV) of candidate materials and select breeding materials. This study aimed to use genomic prediction to evaluate 15 traits in a collection of 628 common bean lines (including 484 landraces and 144 breeding lines) to determine a common bean GP model. The GP model constructed by landraces showed a moderate to high predictive ability (ranging from 0.59–0.88). Using all landraces as a training set, the predictive ability of the GP model for most traits was higher than that using the landraces from each of two subgene pools, respectively. Randomly selecting breeding lines as additional training sets together with landrace training sets to predict the remaining breeding lines resulted in a higher predictive ability based on principal components analysis. This study constructed a widely applicable GP model of the common bean based on the population structure, and encouraged the development of GP models to quickly aggregate excellent traits and accelerate utilization of germplasm resources.
Plant growth and development are closely related to phosphate (Pi) and auxin. However, data regarding auxin response factors (ARFs) and their response to phosphate in maize are limited. Here, we isolated ZmARF4 in maize and dissected its biological function response to Pi stress. Overexpression of ZmARF4 in Arabidopsis confers tolerance of Pi deficiency with better root morphology than wild-type. Overexpressed ZmARF4 can partially restore the absence of lateral roots in mutant arf7 arf19. The ZmARF4 overexpression promoted Pi remobilization and up-regulated AtRNS1, under Pi limitation while it down-regulated the expression of the anthocyanin biosynthesis genes AtDFR and AtANS. A continuous detection revealed higher activity of promoter in the Pi-tolerant maize P178 line than in the sensitive 9782 line under low-Pi conditions. Meanwhile, GUS activity was specifically detected in new leaves and the stele of roots in transgenic offspring. ZmARF4 was localized to the nucleus and cytoplasm of the mesophyll protoplast and interacted with ZmILL4 and ZmChc5, which mediate lateral root initiation and defense response, respectively. ZmARF4 overexpression also conferred salinity and osmotic stress tolerance in Arabidopsis. Overall, our findings suggest that ZmARF4, a pleiotropic gene, modulates multiple stress signaling pathways, and thus, could be a candidate gene for engineering plants with multiple stress adaptation.
Although bulked segregant analysis (BSA) has been used extensively in genetic mapping, user-friendly tools which can integrate current algorithms for researchers with no background in bioinformatics are scarce. To address this issue, we developed an R package, PNGSeqR, which takes single-nucleotide polymorphism (SNP) markers from next-generation sequencing (NGS) data in variant call format (VCF) as the input file, provides four BSA algorithms to indicate the magnitude of genome-wide signals, and rapidly defines the candidate region through the permutation test and fractile quantile. Users can choose the analysis methods according to their data and experimental design. In addition, it also supports differential expression gene analysis (DEG) and gene ontology analysis (GO) to prioritize the target gene. Once the analysis is completed, the plots can conveniently be exported.
Cadmium (Cd) is a ubiquitous environmental toxicant for aquatic animals. The freshwater crab, Sinopotamon henanense (S. henanense), is a useful model for monitoring Cd exposure since it is widely distributed in sediments whereby it tends to accumulate several toxicants, including Cd. In the recent years, the toxic effects of Cd in the hepatopancreas of S. henanense have been demonstrated by a series of biochemical analysis and ultrastructural observations as well as the deep sequencing approaches and gene expression profile analysis. However, the post-transcriptional regulatory network underlying Cd toxicity in S.henanense is still largely unknown.The miRNA transcriptional profile of the hepatopancreas of S. henanense was used to investigate the expression levels of miRNAs in response to Cd toxicity. In total, 464 known miRNAs and 191 novel miRNAs were identified. Among these 656 miRNAs, 126 known miRNAs could be matched with the miRNAs of Portunus trituberculatus, Eriocheir sinensis and Scylla paramamosain. Furthermore, a total of 24 conserved miRNAs were detected in these four crab species. Fifty-one differentially expressed miRNAs were identified in the Cd-exposed group, with 31 up-regulated and 20 down-regulated. Eight of the differentially expressed miRNAs were randomly selected and verified by the quantitative real-time PCR (qRT-PCR), and there was a general consistency (87.25%) between the qRT-PCR and miRNA transcriptome data. A total of 5258 target genes were screened by bioinformatics prediction. GO term analysis showed that, 17 GO terms were significantly enriched, which were mainly related to the regulation of oxidoreductase activity. KEGG pathway analysis showed that 18 pathways were significantly enriched, which were mainly associated with the biosynthesis, modification and degradation of proteins.In response to Cd toxicity, in the hepatopancreas of S. henanense, the expressions of significant amount of miRNAs were altered, which may be an adaptation to resist the oxidative stress induced by Cd. These results provide a basis for further studies of miRNA-mediated functional adaptation of the animal to combat Cd toxicity.