In this paper, an experimental study was conducted to determine the efficiency of repair methods for sandwich composites used as hull materials in leisure ships. The method was applied to external, scarf, and step patch repairs using an epoxy bond. The load was described in terms of the hogging and sagging moments applied to the hull by waves. Static and fatigue tests were performed to derive the recovery rate of repaired specimens. The experimental results indicated that the recovery rate of specimens with the scarf patch was the highest at 91.80% when the hogging moment was applied. However, the difference in the recovery rate between hogging and sagging moments was the lowest for specimens with the step patch, and the recovery rate was high at 89.96% and 85.15%, respectively.
This paper discusses the results of the third edition of the Monocular Depth Estimation Challenge (MDEC). The challenge focuses on zero-shot generalization to the challenging SYNS-Patches dataset, featuring complex scenes in natural and indoor settings. As with the previous edition, methods can use any form of supervision, i.e. supervised or self-supervised. The challenge received a total of 19 submissions outperforming the baseline on the test set: 10 among them submitted a report describing their approach, highlighting a diffused use of foundational models such as Depth Anything at the core of their method. The challenge winners drastically improved 3D F-Score performance, from 17.51% to 23.72%.
Fractures cause extreme pain to patients and impair movement, thereby significantly reducing their quality of life. However, in fracture patients, movement of the fracture site is restricted through application of a cast, and they are reliant on conservative treatment through calcium intake. Persicae semen (PS) is the dried mature seeds of Prunus persica (L.) Batsch, and in this study the effects of PS on osteoblast differentiation and bone union promotion were investigated. The osteoblast-differentiation-promoting effect of PS was investigated through alizarin red S and Von Kossa staining, and the regulatory role of PS on BMP-2 (Bmp2) and Wnt (Wnt10b) signaling, representing a key mechanism, was demonstrated at the protein and mRNA levels. In addition, the bone-union-promoting effect of PS was investigated in rats with fractured femurs. The results of the cell experiments showed that PS promotes mineralization and upregulates RUNX2 through BMP-2 and Wnt signaling. PS induced the expression of various osteoblast genes, including Alpl, Bglap, and Ibsp. The results of animal experiments show that the PS group had improved bone union and upregulated expression of osteogenic genes. Overall, the results of this study suggest that PS can promote fracture recovery by upregulating osteoblast differentiation and bone formation, and thus can be considered a new therapeutic alternative for fracture patients.
This study explores manipulator control using reinforcement learning, specifically targeting anthropomorphic gripper-equipped robots, with the objective of enhancing the robots' ability to safely exchange diverse objects with humans during human-robot interactions (HRIs). The study integrates an adaptive HRI hand for versatile grasping and incorporates image recognition for efficient object identification and precise coordinate estimation. A tailored reinforcement-learning environment enables the robot to dynamically adapt to diverse scenarios. The effectiveness of this approach is validated through simulations and real-world applications. The HRI hand's adaptability ensures seamless interactions, while image recognition enhances cognitive capabilities. The reinforcement-learning framework enables the robot to learn and refine skills, demonstrated through successful navigation and manipulation in various scenarios. The transition from simulations to real-world applications affirms the practicality of the proposed system, showcasing its robustness and potential for integration into practical robotic platforms. This study contributes to advancing intelligent and adaptable robotic systems for safe and dynamic HRIs.