PZT형 파장가변 필터를 이용하여 파장스윕(wavelength-swept) 광원을 구성할 때 발진파장의 변화율을 일정하게 하려면 필터의 이력(hysteresis)특성을 알아야 한다. 이력특성을 무시하고 필터를 구동할 경우 파장스윕 광원을 사용하는 optical frequency domain reflectometry(OFDR) 시스템의 분해능이 떨어진다. 광스펙트럼 분석기(OSA)를 이용하여 필터의 이력특성을 측정할 수도 있지만 측정시간이 너무 길고 실제 구동조건에서의 이력특성은 측정할 수 없다는 문제가 있어 실제 구동조건에서 필터의 이력특성을 고속으로 측정할 수 있는 OFDR의 원리에 기초한 이력 측정법을 제시하였다. 파장스윕 광원과 간섭계, 신호처리 장치, 그리고 PC 프로그램으로 구성된 고속 이력측정장치를 구현하고, 이를 사용하여 필터 구동조건에서의 이력특성을 측정하였다. 마지막으로 측정된 이력특성을 파장스윕광원의 구동에 적용하여 선형적 파장변화를 얻음으로써 새로운 이력측정법의 유효성을 검증하였다. Implementation of a wavelength-swept source with constant tuning rate adopting a PZT-type tunable filter, requires the knowledge of hysteresis of the filter used. The hysteresis must be considered to avoid any degradation in resolution of the optical frequency domain reflectometry (OFDR) system. An optical spectrum analyzer (OSA) could be used to do the hysteresis measurement, but its measurement time is too long for the high-speed driving conditions for the filter. We proposed a new hysteresis measurement method based on OFDR, which could measure the hysteresis in a real driving condition. A hysteresis measurement apparatus consisted of wavelength-swept source, interferometer, signal processing unit, and PC program is built and used to do the measurement. It is concluded that the new method is useful in the measurement of hysteresis at real driving conditions by successfully implementing a swept-wavelength source whose wavelength change is linear in time.
본 연구에서는 FLAC3D를 이용해 대용량 고온 열에너지저장소가 암반공동과 지상에 위치하는 경우를 각각 모델링하고 운영기간 5년 동안의 비정상상태해석을 수행하여 저장소 외벽을 통한 열손실을 비교 분석하였다. 두 저장모델의 운영 조건 및 입력물성은 모두 동일하나, 암반공동 열에너지저장소는 주변 암반의 전도 열전달에 의해서만 열손실이 발생하고, 지상 저장소는 대기의 대류 열전달에 의해서 열손실이 발생하는 것으로 가정하였다. 열에너지의 반복적인 주입과 토출에 따른 저장온도의 변화를 고려하여 수치해석모델을 작성하였으며, 단열재 두께에 따른 열손실 특성을 함께 검토하였다. 해석 결과, 지상식 저장시설은 운영 기간이 경과하더라도 일정한 열손실률을 보이는 반면 암반공동 저장시설의 열손실률은 운영 초기 단계에서 급격히 감소하여 일정한 값으로 수렴하는 경향을 보였다. 이러한 열손실의 감소는 시간 경과에 따라 주변 암반의 온도가 상승함으로써 저장소외벽에서의 열유속이 감소하기 때문으로 판단할 수 있다. 운영 후 5년 경과 시 암반공동 열에너지저장소의 누적열손실량은 지상저장소에 비해 약 72.7%로 나타났으며, 암반공동 저장시설의 열손실 특성은 주변 암반의 히팅 효과로 인해 지상식 저장시설에 비해 단열재 두께에 대한 민감도 및 의존도가 상대적으로 낮은 것으로 분석되었다. A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.
일반적으로 열저장소의 종횡비(폭에 대한 높이의 비)가 커짐에 따라 저장된 열에너지의 성층화가 높게 유지될 수 있는 것으로 알려져 있다. 따라서 열저장소의 열적 성능을 높이기 위해서는 저장소 종횡비를 크게 설정하는 것이 유리할 것이다. 그러나 종횡비의 증가에 따라 저장소의 폭에 비해 높이가 커지고, 이는 열저장소의 구조적 안정성 측면에서 불리하게 작용할 수 있으므로 저장소의 최적 종횡비 결정시 열적 성능 분석과 더불어 역학적 안정성에 대한 정량적인 분석이 수행되어야 할 것이다. 본 연구에서는 지하 열에너지 저장을 위한 사일로형 암반공동의 종횡비 변화에 따른 역학적 안정성을 수치해석적으로 조사하였다. 적용한 종횡비는 1-6의 범위이었고, 전단강도 감소기법에 의한 안전율을 토대로 암반공동의 역학적 안정성을 평가하였다. 종횡비별 안정성 분석 결과, 암반공동의 종횡비가 증가함에 따라 안전율이 감소하는 경향을 보였으며, 주변 암반의 측압계수가 안정성에 미치는 영향이 큰 것으로 분석되었다. 또한 동일한 암반특성 및 종횡비 조건에서 암반공동의 규모(저장 용량)가 줄어듦에 따라 안정성이 향상되는 것으로 나타나, 큰 규모의 단일 암반공동을 소규모의 다중 암반공동으로 분할함으로써 높은 종횡비의 암반공동 설계가 가능한 것을 알 수 있었다. It is generally well known that the stratification of thermal energy in heat stores can be improved by increasing the aspect ratio (the height-to-width ratio) of the stores. Accordingly, it will be desirable to apply a high aspect ratio so as to demonstrate the good thermal performance of heat stores. However, as the aspect ratio of a store increases, the height of the store become larger compared to its width, which may be unfavorable for the structural stability of the store. Therefore, to determine an optimum aspect ratio of heat stores, a quantitative mechanical stability assessment should be performed in addition to thermal performance evaluations. In the present study, we numerically investigated the mechanical stability of silo-shaped rock caverns for underground thermal energy storage at different aspect ratios. The applied aspect ratios ranged from 1 to 6 and the mechanical stability was examined based on factor of safety using a shear strength reduction method. The results from the present study showed that the factor of safety of rock caverns tended to decrease with the increase in aspect ratio and the stress ratio of the surrounding rock mass was influential to the stability of the caverns. In addition, the numerical results demonstrated that under the same conditions of rock mass properties and aspect ratio, mechanical stability could be improved by the reduction in cavern size (storage volume), which indicates that one can design high-aspect-ratio rock caverns by dividing a single large cavern into multiple small caverns.
열에너지를 성층화하여 저장하는 주된 목적은 에너지의 열역학적 질을 유지하기 위한 것으로서 열에너지의 성층화를 통해 필요시 원하는 온도에서 열에너지 활용이 가능하다. 저장소 내 열에너지의 온도에 따른 분리, 즉 열성층화는 이와 같은 열에너지의 활용에 영향을 미치는 핵심 인자이다. 본 논문에서는 열성층화의 정도를 평가할 수 있는 기존에 제안된 기법들을 소개하였으며, 특히 열에너지의 주입, 저장, 배출 과정 동안 열저장소의 성층화와 관련된 성능을 결정하는 데 사용될 수 있는 기법들을 중심으로 개념 및 특징을 살펴보았다. 또한 열성층화 지수를 이용하는 방법을 토대로 스웨덴 Lyckebo 암반공동 내 열에너지의 성층도를 비교 분석하여 기법의 적용성을 조사하였다. A primary objective in creating a stratified thermal storage is to maintain the thermodynamic quality of energy, so thermally stratified energy can be extracted at temperatures required for target activities. The separation of the thermal energy in heat stores to layers with different temperatures, i.e., the thermal stratification is a key factor in achieving this objective. This paper introduces different methods that have been proposed to characterize the thermal stratification in heat stores. Specifically, this paper focuses on the methods that can be used to determine the ability of heat stores to promote and maintain stratification during the process of charging, storing and discharging. In addition, based on methods using thermal stratification indices, the degrees of stratification of stored energy in Lyckebo rock cavern in Sweden were compared and the applicability of the methods was investigated.
노천광산에서 사면설계는 안정성과 경제성 측면에서 동시에 접근하여 결정해야 한다. 또한 일반 도로 사면과 달리 대부분 보강 없이 굴착해야 하기 때문에 사면경사가 가장 중요한 설계 변수이다. 본 연구에서는 인도네시아 Pasir 광산의 Roto South 채탄장에 대한 사면 변위계측, 계측자료의 해석 및 수치해석을 통해 사면의 거동을 감시하기 위한 계측 시스템을 제안하고자 한다. Pasir 광산의 경우 관리해야할 사면의 영역이 매우 광범위하고, 수치해석에 의한 예상 변위량은 최대 3,000 mm 정도로 나타났다. 현장에서 수행된 경사계에 의한 계측 및 GPS에 의한 변위 계측에 대한 검토와 자동화를 위한 SSR (slope stability radar system)의 적용에 대해 검토하였다. The slope design of an open-pit mine must ensure slope stability and economic feasibility. The overall slope angle of the pit is therefore the main factor of concern because of limited support or reinforcement options available in such a setting. This study examines the optimal measurement system for monitoring the behavior of the slope in an open-pit mine using displacement measurement, data analysis, and numerical simulations for a coal mine at Pasir, Indonesia. The area of slope to be managed is extensive and the maximum displacement, as calculated by numerical analysis, is about 3,000 mm. The displacement data, measured by inclinometer and GPS, were analyzed, and the applicability of SSR (slope stability radar) was reviewed in comparison with other monitoring systems.
본 연구에서는 전산유체역학 코드인 FLUENT를 이용하여 열에너지 지하 저장을 위한 최초의 대규모 암반공동인 스웨덴 Lyckebo 저장소의 열성층화 거동을 분석하였다. 열에너지의 반복적인 저장 및 생산으로 인한 주변 암반의 히팅이 열성층화와 열손실에 미치는 영향을 분석하기 위해 암반의 온도조건을 달리하여 열전달 해석을 수행하였으며, 성층화 지수를 토대로 열에너지 저장 후 시간경과에 따른 열성층화의 변화를 정량적으로 분석하였다. 분석결과, 주변 암반이 히팅되지 않은 저장공동의 초기 운영단계에서는 시간경과에 따라 저장된 열에너지의 성층화가 빠르게 저하되는것으로 나타났으며, 저장공동의 운영기간이 늘어남에 따라 주변 암반의 히팅으로 인해 열성층화의 변화 및 열손실이 줄어드는 것을 확인하였다. Using a computational fluid dynamics (CFD) code, FLUENT, the present study investigated the thermal stratification behavior of Lyckebo storage in Sweden, which is the very first large-scale rock cavern for underground thermal energy storage. Heat transfer analysis was carried out for numerical cases with different temperatures of the surrounding rock mass in order to examine the effect of rock mass heating due to periodic storage and production of thermal energy on thermal stratification and heat loss. The change of thermal stratification with respect to time was quantitatively examined based on an index of the degree of stratification. The results of numerical simulation showed that in the early operational stage where the surrounding rock mass was less heated, the stratification of stored thermal energy was rapidly degraded over time, but the degradation and heat loss tended to reduce as the surrounding rock mass was heated during a long period of operation.