The Spitzer Legacy survey “From Molecular Cores to Planet-forming Disks” (c2d Evans et al. 2003) provided infrared observations of sources that span the evolutionary sequence from molecular cores to proto-planetary disks, encompassing a wide range of starforming environments. These overall observations allowed to study crucial steps in the formation of stars and planets with unprecedented sensitivity. We present some results from the Spitzer observations and complementary data in the low-mass star forming regions in Chamaeleon II and Lupus. We focus, in particular, on the star-formation history and activity of these clouds, the low-mass end of their IMF and the envelope/disk properties of their
The metallicity of young low mass Post-T Tauri stars in coeval associations is practically unknown. This work is the beginning of a systematic measurement of these metallicities based on high resolution spectra of low rotating members of these associations. Here, we present an application by examining the behavior of the Iron abundance with stellar mass and temperature of some members of an association 30 Myr old. This will test the possibility of explaining the high metallic content of stars with planets by means of injection of planetesimals during this early stage of evolution.
Aims. We aim at detecting the presence of companions inside the inner hole/gap region of a sample of five well known transitional disks using spatially-resolved imaging in the near-IR with the VLT/NACO/S13 camera, which probes projected distances from the primary of typically to 7 arcsec. The sample includes the stars DoAr 21, HD 135344B (SAO 206462), HR 4796A, T Cha, and TW Hya, spanning ages of less than 1 to 10 Myr, spectral types of A0 to K7, and hole/gap outer radii of 4 to 100 AU. Methods. In order to enhance the contrast and to avoid saturation at the core of the point-spread function (PSF), we use narrow-band filters at 1.75 and 2.12 {\mu}m. The locally optimized combination of (LOCI) algorithm is applied for an optimal speckle noise removal and PSF subtraction, providing an increase of 0.5-1.5 mag in contrast over the classic method. Results. With the proviso that we could have missed companions owing to unfavorable projections, the VLT/NACO observations rule out the presence of unresolved companions down to an inner radius of about 0.1 from the primary in all five transitional disks and with a detection limit of 2 to 5 mag in contrast. In the disk outer regions the detection limits typically reach 8 to 9 mag in contrast and 4.7 mag for T Cha. Hence, the NACO images resolve part of the inner hole/gap region of all disks with the exception of TW Hya, for which the inner hole is only 4 AU. The 5{\sigma} sensitivity profiles, together with a selected evolutionary model, allow to discard stellar companions within the inner hole/gap region of T Cha, and down to the substellar regime for HD 135344B and HR 4796A. DoAr 21 is the only object from the sample of five disks for which the NACO images are sensitive enough for a detection of objects less massive than \sim 13 MJup that is, potential giant planets or low-mass brown dwarfs at radii larger than \sim 76 AU (0.63).
The results of an optical spectroscopic survey of a sample of young stellar objects (YSOs) and pre-main sequence (PMS) stars in the Lupus Clouds are presented. 92 objects were observed with VLT/FLAMES. All of those objects show IR excess as discovered by the Spitzer Legacy Program "From Molecular Cores to Planet-Forming Disks" (c2d). After reduction, 54 spectra with good signal-to-noise ratio are spectrally classified. Effective temperatures and luminosities are derived for these objects, and used to construct H-R diagrams for the population. The sample consists mostly of M-type stars, with 10% K-type stars. Individual ages and masses are inferred for the objects according to theoretical evolutionary models. The mean population age is found to be between 3.6 and 4.4 Myr, depending on the model, while the mean mass is found to be ~0.3 M for either model. Together with literature data, the distribution of spectral types is found to be similar to that in Chamaeleon I and IC348. The H{\alpha} line in emission, found in 49% of the sample, is used to distinguish between classical and weak-line T Tauri stars. 56% of the objects show H{\alpha} in emission and are accreting T Tauri stars. Mass accretion rates between 10-8 and 10-11 M yr-1 are determined from the full width at 10% of the H{\alpha} peak intensity. These mass accretion rates are, within a large scatter, consistent with the Mac \propto M 2 relation found in the literature.
Aims. Dust grains in the planet-forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation, and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks for a statistically significant number of TTauri stars (96).
Methods. As part of the cores to disks (c2d) legacy program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars, over a spectral range of 5-35 μm where many silicate amorphous and crystalline solid-state features are present. At these wavelengths, observations probe the upper layers of accretion disks up to distances of a dozen AU from the central object.
Results. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. The Fe-rich crystalline silicates are largely absent in the c2d IRS spectra. The strength and detection frequency of the crystalline features seen at λ > 20 μm correlate with each other, while they are largely uncorrelated with the observational properties of the amorphous silicate 10 μm feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (≤1 AU) emitting at ~ 10 μm and a much colder region emitting at λ > 20 μm (≤10 AU). We identify a crystallinity paradox, as the long-wavelength (λ > 20 m) crystalline silicate features are detected 3.5 times more frequently (~55% vs. ~15%) than the crystalline features arising from much warmer disk regions (λ ~ 10 μm). This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The analysis of the shape and strength of both the amorphous 10 μm feature and the crystalline feature around 23 μm provides evidence for the prevalence of μm-sized (amorphous and crystalline) grains in upper layers of disks.
Conclusions. The abundant crystalline silicates found far from their presumed formation regions suggest efficient outward radial transport mechanisms in the disks around TTauri stars. The presence of μm-sized grains in disk atmospheres, despite the short timescales for settling to the midplane, suggests efficient (turbulent) vertical diffusion, probably accompanied by grain-grain fragmentation to balance the expected efficient growth. In this scenario, the depletion of submicron-sized grains in the upper layers of the disks points toward removal mechanisms such as stellar winds or radiation pressure.
Dust grains in the planet forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks. As part of the Cores to Disks Legacy Program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. Observational properties of the crystalline features seen at lambda > 20 mu correlate with each other, while they are largely uncorrelated with the properties of the amorphous silicate 10 mu feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (< 1 AU) emitting at lambda ~ 10 mu and a much colder region emitting at lambda > 20 mu (< 10 AU). We identify a crystallinity paradox, as the long-wavelength crystalline silicate features are 3.5 times more frequently detected (~55 % vs. ~15%) than the crystalline features arising from much warmer disk regions. This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The abundant crystalline silicates found far from their presumed formation regions suggests efficient outward radial transport mechanisms in the disks. The analysis of the shape and strength of both the amorphous 10 mu feature and the crystalline feature around 23 mu provides evidence for the prevalence of micron-sized grains in upper layers of disks. Their presence in disk atmospheres suggests efficient vertical diffusion, likely accompanied by grain-grain fragmentation to balance the efficient growth expected. Finally, the depletion of submicron-sized grains points toward removal mechanisms such as stellar winds or radiation pressure.
We report on the results of an optical spectroscopic survey designed to confirm the youth and determine the spectral types among a sample of young stellar object (YSO) candidates in the Serpens molecular cloud. We observed 150 infrared (IR) excess objects previously discovered by the Spitzer Legacy Program "From Molecular Cores to Planet-Forming Disks" (c2d), bright enough for subsequent Spitzer/InfraRed Spectrograph (IRS) spectroscopy. We obtained 78 optical spectra of sufficient signal-to-noise for analysis. Extinctions, effective temperatures, and luminosities are estimated for this sample, and used to construct Hertzsprung-Russell (H-R) diagrams for the population. We identified 20 background giants contaminating the sample, based on their relatively high extinction, position in the H-R diagram, the lack of Hα emission and relatively low IR excess. Such strong background contamination (25%) is consistent with the location of Serpens being close to the Galactic plane (5° Galactic latitude). The remaining 58 stars (75%) were all confirmed to be young, mostly K- and M-type stars that are presumed to belong to the cloud. Individual ages and masses for the YSOs are inferred based on theoretical evolutionary models. The models indicate a spread in stellar ages from 1 Myr to 15 Myr, peaking at 2–6 Myr, and a mass distribution of 0.2–1.2 M☉ with median value around 0.8 M☉. Strong Hα emission lines (EW[Hα] > 3 Å) have been detected in more than half of the sample (35 stars). The mass accretion rates as derived from the Hα line widths span a broad distribution over four orders of magnitude with median accretion rate of 10−8 M☉ yr−1. Our analysis shows that the majority of the IR excess objects detected in Serpens are actively accreting, young T-Tauri stars.
A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.