Abstract It is important for civil engineering applications to investigate resistance to wood decay in aqueous environments. DNA from microorganisms inhabiting logs (groynes) that had been used for about 15 years as a water control system to prevent riverbank erosion was extracted and the microbial community structure was examined. DNA was extracted from specimens in four sections, above and under the water, under the ground and from the bottom parts of the logs that were pulled out from the river. Then, barcode sequences for the detection of fungi and bacteria were amplified from each DNA sample by polymerase chain reaction. Microbes were identified from the nucleotide sequences, and the relationships between microbes and environmental conditions were discussed. The wood in the section above the water was significantly decayed, while slight decay and strength loss were observed in the other sections. The white-rot basidiomycete Xeromphalina sp. was detected in the section above the water, suggesting that this fungal species was responsible for the significant decay of the logs in this study. Wood in the sections under the water and under the ground including the bottom of the logs was not decayed even though the fungus was detected in all sections of the logs, suggesting that Xeromphalina sp. could not degrade the wood in the water and underground where the oxygen supply was limited.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
trans-RuCl(2)[(R)-xylbinap][(R)-daipen] or the S,S complex acts as an efficient catalyst for asymmetric hydrogenation of hetero-aromatic ketones. The hydrogenation proceeds with a substrate-to-catalyst molar ratio of 1000-40000 to give chiral alcohols in high ee and high yield. The enantioselectivity appears to be little affected by the properties of the hetero-aromatic ring. This method allows for asymmetric synthesis of duloxetine, an inhibitor of serotonin and norepinephrine uptake carriers.
Oxalate synthesis was rigorously investigated in a wood-decaying fungus, Gloeophyllum trabeum, using 13C metabolic flux analysis, a method not previously explored in this type of system.
New methodology was developed for the introduction of an acetate unit into the Schiff base 2, based on the reaction of the Schiff base 2 with malonic acid monoester or vinyloxyborane. Furthermore, the synthesis of Boc-pyrimidoblamic acid, a key fragment for the total synthesis of bleomycin, was achieved by utilizing these two methods.
The photosynthetic cyclic electron transfer of the purple bacterium Rubrivivax gelatinosus, involving the cytochrome bc1 complex and the reaction center, can be carried out via two pathways. A high potential iron-sulfur protein (HiPIP) acts as the in vivo periplasmic electron donor to the reaction center (RC)-bound cytochrome when cells are grown under anaerobic conditions in the light, while cytochrome c is the soluble electron carrier for cells grown under 8aerobic conditions in the dark. A spontaneous reversion of R. gelatinosus C244, a defective mutant in synthesis of the RC-bound cytochrome by insertion of a Kmr cassette leading to gene disruption with a slow growth rate, restores the normal photosynthetic growth. This revertant, designated C244-P1, lost the Kmr cassette but synthesized a RC-bound cytochrome with an external 77-amino acid insertion derived from the cassette. We characterized the RC-bound cytochrome of this mutant by EPR, time-resolved optical spectroscopy, and structural analysis. We also investigated the in vivo electron transfer rates between the two soluble electron donors and this RC-bound cytochrome. Our results demonstrated that the C244-P1 RC-bound cytochrome is still able to receive electrons from HiPIP, but it is no longer reducible by cytochrome c8. Combining these experimental and theoretical protein-protein docking results, we conclude that cytochrome c8 and HiPIP bind the RC-bound cytochrome at two distinct but partially overlapping sites.