Pioglitazone (PIO) attenuates cisplatin nephrotoxicity whereas the underlying mechanism remains unknown. Apoptosis is associated with mitochondrial dysfunction and SIRT1 activation can decrease cell apoptosis in cisplatin nephrotoxicity. Therefore, we explored whether the protective effect of PIO in cisplatin nephrotoxicity is achieved by suppressing mitochondria-mediated apoptosis through SIRT1/p53 signalling regulation. Cell viability, apoptosis, survival rate, renal pathology and function were examined. Moreover, we also analysed the expression of SIRT1, Acetyl-p53, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial permeability transition pore (mPTP) opening, adenosine triphosphate (ATP) and apoptosis-related protein in vivo and in vitro. Pioglitazone treatment significantly increased cell viability, promoted SIRT1-p53 interaction, upregulated Bcl-2 expression, activated SIRT1 and elevated mitochondrial ATP synthesis after cisplatin treatment. However, PIO decreased the generation of ROS, opening of mPTP, dissipation of MMP and translocation of cytochrome c after cisplatin treatment. Pioglitazone also reduced the activation of caspase-3 and caspase-9, lowered the ratio of Bax/Bcl-2, attenuated kidney pathological damage and dysfunction, down-regulated the expression of Acetyl-p53, PUMA-α and Bax and abated cell apoptosis after cisplatin treatment. The SIRT1 inhibitor, EX527, clearly reversed the protective effects of PIO. These results implied PIO attenuated cisplatin nephrotoxicity by suppressing mitochondria-mediated apoptosis through regulating SIRT1/p53 signalling.
Prevalent mutations in the mitogen-activated protein kinase 1 (MAPK1)/extracellular signal-regulated kinase 2 (ERK2) pathway have been identified in cervical squamous cell carcinoma in a large-scale genome sequencing effort. Furthermore, mutations in the rat sarcoma viral oncogene homolog (RAS)/Raf/Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway have also been revealed to have important roles in the pathogenesis of human cancer. However, whether the potential hotspot mutations in ERK2 and other components of the RAS/RAF/MEK/ERK signaling pathway also exist in Chinese patients with cervical carcinoma remains to be elucidated. In the present study, a total of 260 patients with cervical carcinoma of distinct subtypes were analyzed for the presence of potential hotspot mutations in the RAS/RAF/MEK/ERK signaling pathway. No ERK2 mutations were detected in these samples; however, Kirsten RAS (KRAS) p.G12D (c.35G>A) mutation was identified in 2/26 (7.7%) cervical adenocarcinoma cases, including 1/20 cervical mucinous adenocarcinoma and 1/6 cervical endometrioid carcinoma cases. In addition, no mutations in the ERK1, neuroblastoma RAS, Harvey RAS or B-Raf proto-oncogene serine/threonine kinase genes were detected in the present study. These results indicated that ethnic differences may be a primary reason for the discrepancy in ERK2 mutation frequencies between the current study and previous studies. Furthermore, mutation in the KRAS gene, but not other genes in the RAS/RAF/MEK/ERK signaling pathway, may have an active role in the pathogenesis of cervical carcinoma.
To investigate whether mutations in the minichromosome maintenance complex component (MCM) family genes were present in patients with polycystic ovary syndrome (PCOS) of Chinese descent.A total of 365 Chinese patients with PCOS and 860 women without PCOS as control who underwent with assisted reproductive technology were enrolled. Genomic DNA was extracted from the peripheral blood of these patients for PCR and Sanger sequencing. The potential damage of these mutations/rare variants was analyzed through evolutionary conservation analysis and bioinformatic programs.Twenty-nine missense or nonsense mutations/rare variants in the MCM genes were identified in 365 patients with PCOS (7.9%, 29/365), all these mutations/rare variants were predicted to be 'disease causing' by SIFT and PolyPhen2 programs. Among those, four mutations were reported here for the first time, p.S7C (c.20C > G) in MCM2 (NM_004526.3), p.K350R (c.1049A > G) in MCM5 (NM_006739.3), p.K283N (c.849G > T) in MCM10 (NM_182751.2), and p.S1708F (c.5123C > T) in MCM3AP (NM_003906.4). All of these novel mutations were not found in our 860 control women, or also absent in public databases. In addition, the evolutionary conservation analysis results suggested that these novel mutations caused highly conserved amino acid substitutions among 10 vertebrate species.This study identified a high frequency of potential pathogenic rare variants/mutations in MCM family genes in Chinese women with PCOS, which further expands the genotype spectrum in PCOS.
Polycystic ovary syndrome (PCOS) affects 8-13% of reproductive-age females worldwide and mutations or aberrant expression of androgen receptor (AR) may cause the onset of this disease. In the present study, 258 samples from Han Chinese patients with PCOS were analyzed for the presence of AR mutations via sequencing of all coding exons of the AR gene. A total of five heterozygous missense mutations, namely p.V3M, p.Q72R, p.S158L, p.S176R and p.G396R, were identified in five of the patients. Among these, p.S158L was a novel mutation that, to the best of our knowledge, has not been reported previously. Although the remaining four mutations have been reported previously, they existed at low frequencies or were absent in the control subjects and in the Exome Aggregation Consortium database. The results of evolutionary conservation and in silico analysis revealed that the p.V3M, p.S158L and p.S176R mutations were pathogenic, whereas the p.Q72R and p.G396R mutations were benign. Compared with the patients with PCOS without AR mutations or with benign AR mutations, markedly lower estrogen levels on the day of human chorionic gonadotropin injection were observed in the three patients with PCOS with potentially pathogenic mutations. In addition, patients with PCOS with pathogenic mutations had lower numbers of oocytes; however, the difference was not statistically significant. Of note, these observations should be interpreted with caution due to the relatively small sample size in the present study. Therefore, a larger number of samples should be collected to validate the results of the present study in future studies. In summary, the present study identified three potential pathogenic mutations in 258 Han Chinese patients with PCOS and these mutations may have an implication in the pathogenesis of PCOS.
FoxM1 is a specific transcription factor that has an important function in aggressive human carcinomas, including cervical cancer. However, the specific function and internal molecular mechanism in cervical cancer remain unclear. In this study, RNAi-mediated FoxM1 knockdown inhibited cell growth. This process also decreased the migration and invasion activities of HeLa cells in vitro. Downregulation of FoxM1 inhibited tumor growth and angiogenesis in vivo. In addition, the expressions of uPA, matrix metalloproteinase (MMP)-2, MMP-9 and VEGF were significantly decreased in vitro and in vivo. These results suggested that the inactivation of FoxM1 could be a novel therapeutic target for cervical cancer treatment.
Background: Intrahepatic cholestasis of pregnancy (ICP) is associated with a high incidence of fetal morbidity and mortality. Therefore, revealing the mechanisms involved in ICP and its association with fetal complications is very important. Methods: Here, we used a whole-exome sequencing (WES) approach to detect novel mutations of organic anion transporting polypeptide (OTAP) genes, ATP-binding cassette transporter (ABC) genes, and receptor genes associated with ICP in 249 individuals and 1,029 local control individuals. Two available tools, SIFT and PolyPhen-2, were used to predict protein damage. Protein structuremodeling and comparison between the reference and modified protein structures were conducted by SWISS-MODEL and Chimera 1.14rc software, respectively. Results: A total of 5,583 mutations were identified in 82 genes related to bile acid transporters and receptors, of which 62 were novel mutations. These novel mutations were absent in the 1,029 control individuals and three databases, including the 1,000 Genome Project (1000G_ALL), Exome Aggregation Consortium (ExAC), and Single-Nucleotide Polymorphism Database (dbSNP). We classified the 62 novel loci into two groups (damaging and probably damaging) according to the results of SIFT and PolyPhen-2. Out of the 62 novel mutations, 24 were detected in the damaging group. Of these, five novel possibly pathogenic variants were identified that were located in known functional genes, including ABCB4 (Ile377Asn), ABCB11 (Ala588Pro), ABCC2 (Ile681Lys and Met688Thr), and NR1H4 (Tyr149Ter). Moreover, compared to the wild-type protein structure, ABCC2 Ile681Lys and Met688Thr protein structures showed a slight change in the chemical bond lengths of ATP-ligand binding amino acid side chains. The combined 32 clinical data points indicate that the mutation group had a significantly ( p = 0.04) lower level of Cl ions than the wild-type group. Particularly, patients with the 24 novel mutations had higher average values of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bile acids (TBA), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) than patients with the 38 novel mutations in the probably damaging group and the local control individuals. Conclusion: The present study provides new insights into the genetic architecture of ICP involving these novel mutations.
Background Polycystic ovary syndrome (PCOS) is an endocrine disorders and characterized by polycystic ovary morphology and oligomenorrhea, affecting fertility and health condition of female around the world. The causative factors of PCOS are complex, and genetic structure remains a long-standing medical challenge in genetics. Previous genome-wide association study (GWAS) showed that Wing-less-related integration site (Wnt) signaling is the most affected pathway among PCOS-related risk genes, and genetic mutations in the Wnt/β-catenin signaling may lead to abnormal development of PCOS.
Abstract Background Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and cholestasis in late pregnancy and results in adverse pregnancy outcomes, including preterm delivery and birth weight, which are affected by the genetic and environmental background. However, until now, the genetic architecture of ICP has remained largely unclear. Methods Twenty-six clinical data points were recorded for 151 Chinese ICP patients. The data generated from whole-exome sequencing (WES) using the BGISEQ-500 platform were further analyzed by Burrows-Wheeler Aligner (BWA) software, Genome Analysis Toolkit (GATK), ANNOVAR tool, etc. R packages were used to conduct t-test, Fisher’s test and receiver operating characteristic (ROC) curve analyses. Results We identified eighteen possible pathogenic loci associated with ICP disease in known genes, covering ABCB4 , ABCB11 , ATP8B1 and TJP2 . The loci Lys386Gln, Gly527Gln and Trp708Ter in ABCB4 , Leu589Met, Gln605Pro and Gln1194Ter in ABCB11 , and Arg189Ser in TJP2 were novel discoveries. In addition, WES analysis indicated that the gene ANO8 involved in the transport of bile salts is newly identified as associated with ICP. The functional network of the ANO8 gene confirmed this finding. ANO8 contained 8 rare missense mutations that were found in eight patients among the 151 cases and were absent from 1029 controls. Out of the eight SNPs, 3 were known, and the remaining five are newly identified. These variants have a low frequency, ranging from 0.000008 to 0.00001 in the ExAC, gnomAD – Genomes and TOPMED databases. Bioinformatics analysis showed that the sites and their corresponding amino acids were both highly conserved among vertebrates. Moreover, the influences of all the mutations on protein function were predicted to be damaging by the SIFT tool. Combining clinical data, it was found that the mutation group (93.36 µmol/L) had significantly ( P = 0.038) higher total bile acid (TBA) levels than the wild-type group (40.81 µmol/L). Conclusions To the best of our knowledge, this is the first study to employ WES technology to detect genetic loci for ICP. Our results provide new insights into the genetic basis of ICP and will benefit the final identification of the underlying mutations.