Views Icon Views Article contents Figures & tables Video Audio Supplementary Data Peer Review Share Icon Share Twitter Facebook Reddit LinkedIn Tools Icon Tools Reprints and Permissions Cite Icon Cite Search Site Citation Nam H. Nguyen, Quy C. Tran, Thach A. Nguyen, Trung V. Phan; The Effect of Charge Discretization on the Electrical Field Inside a Conductor. Phys. Teach. 1 January 2024; 62 (1): 29–31. https://doi.org/10.1119/5.0115741 Download citation file: Ris (Zotero) Reference Manager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentAmerican Association of Physics TeachersThe Physics Teacher Search Advanced Search |Citation Search
This paper presents new results of static bending in high temperature and thermal buckling of sandwich functionally graded beam based on new third-order shear deformation theory (TSDT) and finite element formulations. We assume that the sandwich beam placed in a high-temperature environment for a long time, and so that the temperature distributions uniformly across the beam thickness and material properties are temperature-dependent. Using this TSDT, the analysis does not need any shear correction factors and has no shear-locking. The results show that not all functionally graded structures could process similar to mechanical behaviors and have the ability to perform in high temperature.
The announced release dates for Automated Driving Systems (ADS) with conditional (SAE-L3) and high (SAE-L4) levels of automation according to [20] are getting closer. Still, there is no established state of the art for proving the safety of these systems. The ISO 26262 for automotive functional safety is still valid for these systems but only covers risks from malfunctions of electric and electronic (E/E) systems. A framework for considering issues caused by weaknesses of the intended functionality itself is standardized in the upcoming release of the ISO 21448 - Safety of the Intended Functionality (SOTIF). Rich experience regarding limitations of safety performance of complex sensors can be found in this standard. In this paper, we highlight another aspect of SOTIF that becomes important for higher levels of automation, especially, in urban areas: 'conscious risk taking'. In traditional automotive systems, conflicting goal resolutions are generally left to the car driver. With SAE-level 3 or at latest SAE-level 4 ADS, the driver is not available for decisions anymore. Even 'safe drivers' do not use the safest possible driving behavior. In the example of occlusions next to the street, a driver balances the risk of occluded pedestrians against the speed of the traffic flow. Our aim is to make such decisions explicit and sufficiently safe. On the example of crossing pedestrians, we show how to use statistics to derive a conscious quantitative risk-based decision from a previously defined acceptance criterion. The acceptance criterion is derived from accident statistics involving pedestrians.
This paper presents a nature-inspired meta-heuristic, called a stochastic fractal search based method (SFS) for coping with complex economic load dispatch (ELD) problem. Two SFS methods are introduced in the paper by employing two different random walk generators for diffusion process in which SFS with Gaussian random walk is called SFS-Gauss and SFS with Levy Flight random walk is called SFS-Levy. The performance of the two applied methods is investigated comparing results obtained from three test system. These systems with 6, 10, and 20 units with different objective function forms and different constraints are inspected. Numerical result comparison can confirm that the applied approach has better solution quality and fast convergence time when compared with some recently published standard, modified, and hybrid methods. This elucidates that the two SFS methods are very favorable for solving the ELD problem.
We show how the electrical field inside the conductor changes as a function of the number of charged-particles. We show that the non-vanishing electrical field is concentrated near the surface of the conductor, at a shallow depth on the same order of magnitude as the separation between charges. Our study has illustrated the effect of charge discretization on a fundamental emergent law of electrostatics.