We investigated the effects of salt-sensitive signaling molecules on ionic fluxes and gene expression related to K+/Na+ homeostasis in a perennial herb, Glycyrrhiza uralensis, during short-term NaCl stress (100 mM, 24 h). Salt treatment caused more pronounced Na+ accumulation in root cells than in leaf cells. Na+ ions were mostly compartmentalized in vacuoles. Roots exposed to NaCl showed increased levels of extracellular ATP (eATP), cytosolic Ca2+, H2O2, and NO. Steady-state flux recordings revealed that these salt-sensitive signaling molecules enhanced NaCl-responsive Na+ efflux, due to the activated Na+/H+ antiport system in the plasma membrane (PM). Moreover, salt-elicited K+ efflux, which was mediated by depolarization-activated cation channels, was reduced with the addition of Ca2+, H2O2, NO, and eATP. The salt-adaptive effects of these molecules (Na+ extrusion and K+ maintenance) were reduced by pharmacological agents, including LaCl3 (a PM Ca2+ channel inhibitor), DMTU (a reactive oxygen species scavenger), cPTIO (an NO scavenger), or PPADS (an antagonist of animal PM purine P2 receptors). RT-qPCR data showed that the activation of the PM Na+/H+ antiport system in salinized roots most likely resulted from the upregulation of two genes, GuSOS1 and GuAHA, which encoded the PM Na+/H+ antiporter, salt overly sensitive 1 (SOS1) and H+-ATPase, respectively. Clear interactions occurred between these salt-sensitive agonists to accelerate transcription of salt-responsive signaling pathway genes in G. uralensis roots. For example, Ca2+, H2O2, NO, and eATP promoted transcription of GuSOS3 (salt overly sensitive 3) and/or GuCIPK (CBL-interacting protein kinase) to activate the predominant Ca2+-SOS signaling pathway in salinized liquorice roots. eATP, a novel player in the salt response of G. uralensis, increased the transcription of GuSOS3, GuCIPK, GuRbohD (respiratory burst oxidase homolog protein D), GuNIR (nitrate reductase), GuMAPK3, and GuMAPK6 (the mitogen-activated protein kinases 3 and 6). Moreover, GuMAPK3 and GuMAPK6 expression levels were enhanced by H2O2 in NaCl-stressed G. uralensis roots. Our results indicated that eATP triggered downstream components and interacted with Ca2+, H2O2, and NO signaling to maintain K+/Na+ homeostasis. We propose that a multiple signaling network regulated K+/Na+ homeostasis in NaCl-stressed G. uralensis roots.
Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.
Salt stress is an important environmental cue impeding poplar nitrogen nutrition. Here, we characterized the impact of salinity on proton-driven nitrate fluxes in ectomycorrhizal roots and the importance of a Hartig net for nitrate uptake. We employed two Paxillus involutus strains for root colonization: MAJ, which forms typical ectomycorrhizal structures (mantle and Hartig net), and NAU, colonizing roots with a thin, loose hyphal sheath. Fungus-colonized and noncolonized Populus × canescens were exposed to sodium chloride and used to measure root surface pH, nitrate (NO3- ) flux and transcription of NO3- transporters (NRTs; PcNRT1.1, -1.2, -2.1), and plasmalemma proton ATPases (HAs; PcHA4, -8, -11). Paxillus colonization enhanced root NO3- uptake, decreased surface pH, and stimulated NRTs and HA4 of the host regardless the presence or absence of a Hartig net. Under salt stress, noncolonized roots exhibited strong net NO3- efflux, whereas beneficial effects of fungal colonization on surface pH and HAs prevented NO3- loss. Inhibition of HAs abolished NO3- influx under all conditions. We found that stimulation of HAs was crucial for the beneficial influence of ectomycorrhiza on NO3- uptake, whereas the presence of a Hartig net was not required for improved NO3- translocation. Mycorrhizas may contribute to host adaptation to salt-affected environments by keeping up NO3- nutrition.
Ornithine carbamoyltransferase (OTC) is a key enzyme in the urea cycle to detoxify ammonium produced from amino acid catabolism. OTC deficiency is an X-linked genetic disorder ranging from fatal in newborns to hyperammonemia and anorexia in adults. Through affinity purification of acetylated peptides and mass spectrometry, we identified that OTC is acetylated on lysine residues, including Lys88, which is also mutated in OTC-deficient patients. OTC acetylation was confirmed to occur under physiological conditions. Biochemical characterizations revealed that OTC Lys88 acetylation decreases the affinity for carbamoyl phosphate, one of the two OTC substrates, and the maximum velocity, whereas the K(m) for ornithine, the other OTC substrate, is not affected. Furthermore, Lys88 acetylation is regulated by both extracellular glucose and amino acid availability, indicating that OTC activity may be regulated by cellular metabolic status. Our results provide an example of the novel mechanism of regulating metabolic enzyme activity through protein acetylation.
Human hepatocellular carcinoma (HCC) is one of the most malignant tumors, being particularly induced by unregulated growth and metastasis, and is a leading cause of death and major health problems in many countries. We report here the identification of 167 differentially expressed proteins between HCC (MHCC97-H) cells and Chang liver cells using enhanced nano-liquid chromatography/mass spectrometry (LC/MS). The most relevant pathways of differentially expressed proteins are involved in cytoskeleton organization, stress defense, and energy homeostasis etc. Moreover, of the identified proteins, there are 59 known or putative membrane-associated proteins with multitransmembrane domains confirmed by bioinformatic analysis. These proteins may be associated with cancer, reflecting tumorigenesis of HCC, and would be useful for the development of diagnostic and subsequently pharmaceutical targets of HCC. In addition, we identify a total of 41 proteins that are found to be up- or down-regulated following tanshinone IIA treatment for MHCC97H cells in a time-depended manner. Also, several proteins that are involved in actin cytoskeleton and stress resistance are mainly down-regulated, whereas proteins associated with cell redox homeostasis, mitochondrial, and microtubule-based movement are identified as mostly up-regulated after the treatment. Determination of functional roles of those differentially expressed proteins will enable further understanding of the mechanism of HCC tumorigenesis and exploration of new drugs for therapeutic intervention.
Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV–VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65–73 and 83–94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different statistical approaches, geNorm, NormFinder and BestKeeper. Quantitative real-time PCR showed significant reductions in PDS transcripts (55–64%) in the photobleached leaves of both VIGS-treated poplar species. Our results demonstrate that the TRV-based VIGS provides a practical tool for gene functional analysis in Populus sp., especially in those poplar species which are otherwise recalcitrant to transformation.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L−1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.
Quantitative proteomics is one of the research hotspots in the proteomics field and presently maturing rapidly into an important branch. The two most typical quantitative methods, stable isotope labeling with amino acids in cell culture (SILAC) and isobaric tags for relative and absolute quantification (iTRAQ), have been widely and effectively applied in solving various biological and medical problems. Here, we describe a novel quantitative strategy, termed "IVTAL", for in vivo termini amino acid labeling, which combines some advantages of the two methods above. The core of this strategy is a set of heavy amino acid (13)C(6)-arginine and (13)C(6)-lysine and specific endoproteinase Lys-N and Arg-C that yield some labeled isobaric peptides by cell culture and enzymatic digestion, which are indistinguishable in the MS scan but exhibit multiple MS/MS reporter b, y ion pairs in a full mass range that support quantitation. Relative quantification of cell states can be achieved by calculating the intensity ratio of the corresponding reporter b, y ions in the MS/MS scan. The experimental analysis for various proportions of mixed HeLa cell samples indicated that the novel strategy showed an abundance of reliable quantitative information, a high sensitivity, and a good dynamic range of nearly 2 orders of magnitude. IVTAL, as a highly accurate and reliable quantitative proteomic approach, is expected to be compatible with any cell culture system and to be especially effective for the analysis of multiple post-translational modificational sites in one peptide.