Carbon lights up: A facile chemical method yields multicolor photoluminescent carbon dots derived from polymer/silica nanocomposites, which were prepared using surfactant-modified silica spheres as carriers and resols (phenol/formaldehyde resins) as carbon precursor (see picture). The surface-passivated carbon dots show good biocompatibility as potential bioimaging agents offering nanometer-scale resolution.
Uniform 100-nm megranate-like FeCo/gelatin nanospheres are self-assembled through the efficient chelation of small primary FeCo NCs with gelatin polypeptide chains in a one-pot reaction (see image). The unique nanospheres efficiently combine rapid magnetic response, huge active surface, and high capacity of controlled loading and releasing of DNA molecules. Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Eine nichthydrolytische Hochtemperatur-Aminolyse ist ein neuer Zugang zu monodispersen Titandioxid-Nanokristallen. Dabei wurde die chemische Modifizierung von reaktivem Titanisopropoxid mit Ölsäure als chelatisierendem Liganden genutzt. Seine Eignung, das anisotrope Wachsen hoch kristalliner Anatas-Titandioxid-Nanokristalle (siehe Bild) mit genau eingestellter Größe und Form zu ermöglichen, wurde gezeigt.
Thiolate‐protected gold nanoclusters with high chemical stability are exploited extensively for fundamental research and utility in chosen applications. Here for the first time, the controlled destabilization of extraordinarily stable thiolated gold clusters for the growth of single‐crystalline gold nanoparticles (AuNPs) is demonstrated, which was achieved simply via the oxidation of surface‐protecting thiolates into disulfides by hydrogen peroxide under basic condition. By combining with our experimental observations over the entire destabilization and growth process, the new growth mechanism from clusters to AuNPs is revealed by density functional theory (DFT) calculations. It is found that the size of AuNPs decreases with the increase of hydrogen peroxide concentration due to the generation of more nuclei at the higher hydrogen peroxide concentrations. In addition, the preparation of AuNPs is tuned by changing the concentration of hydrogen peroxide, and they are self‐assembled into microspheres via an evaporation‐mediated process, which can induce strong plasmonic coupling between adjacent AuNPs for ultrasensitive surface‐enhanced Raman scattering detection. The present work demonstrates a facile route to functionalize and engineer AuNPs via controlling the reaction conditions and the ratio of precursors, and thus bring new possibilities for using more clusters as precursors to construct novel nano/microstructures for various applications.
Aerodynamic parameters including the zero-plane displacement (d), roughness length (z0), and friction
velocity (u*) on the di erent underlying surfaces of heavy-grazing site, medium-grazing site, light-grazing site, no-grazing site, dune, inter-dune, grassland, rice paddy site, wheat site, soybean site, and maize site have been computed based on the Monin-Obukhov similarity theory by utilizing the micrometeorologically observed data of dune and vegetation in the semi-arid area at Naiman, Inner Mongolia of China, conducted jointly by the Institute of Desert Research, Chinese Academy of Sciences and the National Institute of Agro-Environmental Sciences of Japan in 1990-1994. And their relationships between wind speed and Richardson number are analyzed. The aerodynamic characteristics of different man-made disturbed grassland ecosystems are also compared. Result shows that the vegetation coverage and the above-ground biomass decrease with the increase in man-made stress of the grassland. The roughness length for di erent underlying surfaces is closely related to vegetation height, above-ground biomass, and ground surface undulation, and Richardson number Ri is also its in
uencing factor. The friction velocity varies largely on different underlying surfaces,and it is positively proportional to wind speed and roughness length. The aerodynamic parameters of various
times on the same underlying surface are different, too. Above results indicate that grassland and vegetation are of significance in preventing desertification, especially in the arid and semi-arid land ecosystems. And the results of this paper are also important for constructing the land surface physical process as well as regional climate model.
A direct silica-coating method has been developed for the gram-scale synthesis of well-dispersed Ag@SiO2 nanoparticles. Subsequent surface functionalization via the well-established silica surface chemistry provided arching points for straightforward bioconjugation with amino-terminated oligonucleotides. Fast hybridization kinetics of the resulting robust oligo-modified Ag@SiO2 nanoprobes with complementary target oligonucleotides render themselves very useful for the fast colorimetric DNA detection based on the sequence-specific hybridization properties of DNA. Additionally, the reliable protocols developed in this study for preparing and functionalizing Ag@SiO2 nanoparticles can be readily extended to other silica-coated nanoparticles, which can also provide a specific platform for the covalent attachment of biomolecules such as amino-rich proteins, enzymes, or amino-terminated oligonucleotides for diverse bioapplications.
Abstract. Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in the further suppression of PBL and thus the deterioration of aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.