ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.
Abstract Coronaviruses encode multiple interferon antagonists that modulate the host response to virus replication. Here, we evaluated pathogenesis and host transcription in response to infection with murine coronaviruses encoding independent mutations in two different viral antagonists: the deubiquitinase (DUB) within nonstructural protein 3 and the endoribonuclease (EndoU) within nonstructural protein 15. The virus with reduced ability to deubiquitinate proteins, herein termed the DUBmut virus, was engineered via X-ray structure-guided mutagenesis and activates an earlier interferon response than the wild type virus. However, the replication kinetics of DUBmut in cultured cells are similar to wild type virus and pathogenesis in mice is also similar to what was observed during infection with wild type virus. On the other hand, we previously reported that an EndoUmut virus containing an inactivated endoribonuclease activity elicited rapid and robust activation of type I interferon, which limited virus replication and pathogenesis. Here, using a transcriptomics approach, we compared the scope and kinetics of the host response to the wild type, DUBmut, and EndoUmut viruses in infected macrophages. We found that the EndoUmut virus activates a focused response, predominantly involving type I interferons and a subset of interferon-responsive genes, within 12 hours after infection. In contrast, the wild type and DUBmut viruses stimulate upregulation of over 2,800 genes, including activation of unfolded protein response (UPR) pathways and a proinflammatory profile associated with viral pathogenesis. This study highlights the role of viral interferon antagonists in shaping the kinetics and magnitude of the host response during virus infection and demonstrates that inactivation of a dominant viral antagonist, the coronavirus endoribonuclease, dramatically alters the host response in macrophages and the disease process. Author Summary Macrophages are an important cell type during coronavirus infections because they “notice” the infection and respond by activating type I interferons, which then act to establish antiviral defenses and limit virus replication. In turn, coronaviruses encode proteins that mitigate the cell’s ability to detect virus replication or amplify the interferon response. Here, we evaluated the host macrophage response to two independent mutant coronaviruses: one with a reduced deubiquitinating activity (DUBmut), and the other containing an inactivated endoribonuclease (EndoUmut). We observed a rapid, robust, and focused response to the EndoUmut virus, which was characterized by enhanced expression of interferon and interferon-stimulated genes. These results indicate that coronaviruses utilize EndoU activity for preventing early activation of interferon in macrophages, thereby allowing for viral replication. In contrast, DUBmut elicited a transient interferon response and ultimately activated over 2,800 genes, including many well-known players in pro-inflammatory pathways and the unfolded protein response. These DUBmut-induced pathways are associated with development and progression of significant disease, similar to what is observed during wild type virus infection. This study demonstrates the distinct consequences of mutating different viral interferon antagonists and reveals that intact coronaviral EndoU activity substantially contributes to the ability of coronaviruses to replicate in macrophages.
Coronaviruses express a multifunctional papain-like protease, termed papain-like protease 2 (PLP2). PLP2 acts as a protease that cleaves the viral replicase polyprotein and as a deubiquitinating (DUB) enzyme which removes ubiquitin (Ub) moieties from ubiquitin-conjugated proteins. Previous in vitro studies implicated PLP2/DUB activity as a negative regulator of the host interferon (IFN) response, but the role of DUB activity during virus infection was unknown. Here, we used X-ray structure-guided mutagenesis and functional studies to identify amino acid substitutions within the ubiquitin-binding surface of PLP2 that reduced DUB activity without affecting polyprotein processing activity. We engineered a DUB mutation (Asp1772 to Ala) into a murine coronavirus and evaluated the replication and pathogenesis of the DUB mutant virus (DUBmut) in cultured macrophages and in mice. We found that the DUBmut virus replicates similarly to the wild-type (WT) virus in cultured cells, but the DUBmut virus activates an IFN response at earlier times compared to the wild-type virus infection in macrophages, consistent with DUB activity negatively regulating the IFN response. We compared the pathogenesis of the DUBmut virus to that of the wild-type virus and found that the DUBmut-infected mice had a statistically significant reduction (P < 0.05) in viral titer in liver and spleen at day 5 postinfection (d p.i.), although both wild-type and DUBmut virus infections resulted in similar liver pathology. Overall, this study demonstrates that structure-guided mutagenesis aids the identification of critical determinants of the PLP2-ubiquitin complex and that PLP2/DUB activity plays a role as an interferon antagonist in coronavirus pathogenesis.IMPORTANCE Coronaviruses employ a genetic economy by encoding multifunctional proteins that function in viral replication and also modify the host environment to disarm the innate immune response. The coronavirus papain-like protease 2 (PLP2) domain possesses protease activity, which cleaves the viral replicase polyprotein, and also DUB activity (deconjugating ubiquitin/ubiquitin-like molecules from modified substrates) using identical catalytic residues. To separate the DUB activity from the protease activity, we employed a structure-guided mutagenesis approach and identified residues that are important for ubiquitin binding. We found that mutating the ubiquitin-binding residues results in a PLP2 that has reduced DUB activity but retains protease activity. We engineered a recombinant murine coronavirus to express the DUB mutant and showed that the DUB mutant virus activated an earlier type I interferon response in macrophages and exhibited reduced replication in mice. The results of this study demonstrate that PLP2/DUB is an interferon antagonist and a virulence trait of coronaviruses.
Abstract Coronaviruses express a multifunctional papain-like protease, termed PLP2. PLP2 acts as a protease that cleaves the viral replicase polyprotein, and a deubiquitinating (DUB) enzyme which removes ubiquitin moieties from ubiquitin-conjugated proteins. Previous in vitro studies implicated PLP2 DUB activity as a negative regulator of the host interferon (IFN) response, but the role of DUB activity during virus infection was unknown. Here, we used X-ray structure-guided mutagenesis and functional studies to identify amino acid substitutions within the ubiquitin-binding surface of PLP2 that reduced DUB activity without affecting polyprotein processing activity. We engineered a DUB mutation (Asp1772 to Ala) into a murine coronavirus and evaluated the replication and pathogenesis of the DUB mutant virus (DUBmut) in cultured macrophages and in mice. We found that the DUBmut virus replicates similarly as the wild-type virus in cultured cells, but the DUBmut virus activates an IFN response at earlier times compared to the wild-type virus infection in macrophages, consistent with DUB activity negatively regulating the IFN response. We compared the pathogenesis of the DUBmut virus to the wild-type virus and found that the DUBmut-infected mice had a statistically significant reduction (p<0.05) in viral titer in livers and spleens at day 5 post-infection, albeit both wild-type and DUBmut virus infections resulted in similar liver pathology. Overall, this study demonstrates that structure-guided mutagenesis aids the identification of critical determinants of PLP2-ubiquitin complex, and that PLP2 DUB activity plays a role as an interferon antagonist in coronavirus pathogenesis. Importance Coronaviruses employ a genetic economy by encoding multifunctional proteins that function in viral replication and also modify the host environment to disarm the innate immune response. The coronavirus papain-like protease 2 (PLP2) domain possesses protease activity, which cleaves the viral replicase polyprotein, and also DUB activity (de-conjugating ubiquitin/ubiquitin-like molecules from modified substrates) using identical catalytic residues. To separate the DUB activity from the protease activity, we employed a structure-guided mutagenesis approach and identified residues that are important for ubiquitin-binding. We found that mutating the ubiquitin-binding residues results in a PLP2 that has reduced DUB activity but retains protease activity. We engineered a recombinant murine coronavirus to express the DUB mutant and showed that the DUB mutant virus activated an earlier type I interferon response in macrophages and exhibited reduced pathogenesis in mice. The results of this study demonstrate that PLP2/DUB is an interferon antagonist and a virulence trait of coronaviruses.