Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure.
The donkey leukocyte-attenuated vaccine of equine infectious anemia virus (EIAV) was the first lentiviral vaccine that induced solid protection from the infection of virulent strains. To elucidate the mechanism of increased immunogenicity and attenuated virulence of the vaccine, the proviral genomic DNA of an EIAV vaccine strain, EIAV(DLV121) was analyzed and compared with the genome of a parental virulent strain EIAV(DV117). Full length viral genomic DNAs were amplified as two segments by LA-PCR and were cloned. Because of the genomic diversity of retroviral quasispecies, 10 full-length sequences of EIAV(DLV121) and 4 full-length sequences of EIAV(DV117) from randomly picked clones were analyzed. Results showed that the average length of the complete nucleotide sequence of EIAV(DLV121) was 8,236bp and EIAV(DV117) was 8,249bp, with the inter-strain diversity of 2.8%. As for individual genes between the vaccine and virulent strains, the differences in nucleotide sequence of S2, LTR and env were significantly higher than the other genes with the diversity of 4.1%, 3.7% and 3.1%, respectively. Considerable variations in deduced amino acid sequences were found in S2, S3 and env. The diversities were 10.4%, 5.6% and 4.8%, respectively. Furthermore, the LTR of EIAV(DLV121) consisted of at least 5 subtypes grouped by their nucleotide sequences. There were two additional N-linked glycosylation sites in the deduced amino acid sequence of EIAV(DV117) gp90 than that of EIAV(DLV121). Among glycosylation sites in the gp90 of virulent strain, 3 were found unique only in EIAV(DV117), of which 2 were located in the principle neutralizing domain (PND). In addition, there was one EIAV(DLV121) -specific glycosylation site, which was positioned in the PND, too. Taken together, it is clear that greatly increased genomic diversity exists in the EIAV vaccine strain, which provides important information for the further study on biological characters of the Chinese EIAV attenuated vaccine.