We have studied the effect of process parameters on the natural-barrier ramp-edge Josephson junctions using YBa2Cu3Ox electrodes, in order to improve uniformity and reproducibility of junctions. The natural barrier is formed during an etching process and an annealing process. The junction properties are controlled by an annealing temperature and an annealing pressure. Also the junction characteristics depend on the ramp-edge angle. After ramp structuring, a bulge of the underelectrode is observed by AFM. The IcRn products of the junctions with the bulge of the ramp surface reach 2 mV at 4.2 K. We speculate that the etching condition is a very important parameter in the junction fabrication.
Using the optogenetic photo-manipulation of photoactivatable (PA)-Rac1, remarkable cell surface ruffling and the formation of a macropinocytic cup (premacropinosome) could be induced in the region of RAW264 macrophages irradiated with blue light due to the activation of PA-Rac1. However, the completion of macropinosome formation did not occur until Rac1 was deactivated by the removal of the light stimulus. Following PA-Rac1 deactivation, some premacropinosomes closed into intracellular macropinosomes, whereas many others transformed into long Rab10-positive tubules without forming typical macropinosomes. These Rab10-positive tubules moved centripetally towards the perinuclear Golgi region along microtubules. Surprisingly, these Rab10-positive tubules did not contain any endosome/lysosome compartment markers, such as Rab5, Rab7, or LAMP1, suggesting that the Rab10-positive tubules were not part of the degradation pathway for lysosomes. These Rab10-positive tubules were distinct from recycling endosomal compartments, which are labeled with Rab4, Rab11, or SNX1. These findings suggested that these Rab10-positive tubules may be a part of non-degradative endocytic pathway that has never been known. The formation of Rab10-positive tubules from premacropinosomes was also observed in control and phorbol myristate acetate (PMA)-stimulated macrophages, although their frequencies were low. Interestingly, the formation of Rab10-positive premacropinosomes and tubules was not inhibited by phosphoinositide 3-kinase (PI3K) inhibitors, while the classical macropinosome formation requires PI3K activity. Thus, this study provides evidence to support the existence of Rab10-positive tubules as a novel endocytic pathway that diverges from canonical macropinocytosis.
Rab35, a member of the Rab GTPase family, has been implicated in various cellular processes including cell motility and membrane trafficking. Although Rab35 is localized to the plasma membrane, Rab proteins that are identified to have high sequence homology with Rab35 exhibit distinct subcellular localization patterns. Comparing the amino acid sequences between Rab35 and its family members revealed a significant variation in an approximate 30-amino acid region of the C-terminus. This suggests that this region determines the subcellular localization of individual Rab proteins. To confirm this hypothesis, we constructed Rab35-Rab10 chimera proteins by exchanging their C-terminal domains with one another. Confocal microscopy of RAW264 cells expressing EGFP-fused Rab35-Rab10 chimeras has indicated that the C-terminal region of Rab35 is critical for its plasma membrane localization. Furthermore, we were able to determine that a basic amino acid cluster exists in the C-terminal region of Rab35 and that Rab35 localization shifts to the Golgi membrane when the number of basic amino acids in this region is reduced. Thus, it is likely that the approximate 30-amino acid C-terminal region containing basic clusters is responsible for Rab35 plasma membrane localization and that its preferential localization depends on the number of basic amino acids.
Significance Macropinocytosis is a form of endocytosis that is accompanied by ruffling of plasma membrane and participates in a diverse range of pathophysiological processes, such as antigen uptake by immune cells and tumor growth. However, the molecular mechanism underlying this process is poorly understood. By exploiting the studies of fluid-phase endocytosis in Caenorhabditis elegans , we found that dephosphorylation of phosphoinositide PI(3)P is essential for macropinocytosis in mammalian cells. We also found that the sequential dephosphorylation of PI(3,4,5)P 3 → PI(3,4)P 2 → PI(3)P → PI at membrane ruffles is required for macropinocytosis. Identification of phosphoinositide phosphatases in the dephosphorylation cascade and a PI(3)P-sensitive K + channel as essential factors for macropinocytosis may provide the way to selectively control macropinocytosis among various endocytic pathways.
Phagocytosis of zymosan by phagocytes is a widely used model of microbial recognition by the innate immune system. Live-cell imaging showed that fluorescent protein-fused Rab35 accumulated in the membranes of phagocytic cups and then dissociated from the membranes of newly formed phagosomes. By our novel pull-down assay for Rab35 activity, we found that Rab35 is deactivated immediately after zymosan internalization into the cells. Phagosome formation was inhibited in cells expressing the GDP- or GTP-locked Rab35 mutant. Moreover, the simultaneous expression of ACAP2—a Rab35 effector protein—with GTP-locked Rab35 or the expression of plasma membrane-targeted ACAP2 showed a marked inhibitory effect on phagocytosis through ARF6 inactivation by the GAP activity of ACAP2. ARF6, a substrate for ACAP2, was also localized on the phagocytic cups and dissociated from the membranes of internalized phagosomes. In support of the microscopic observations, ARF6-GTP pull-down experiments showed that ARF6 is transiently activated during phagosome formation. Furthermore, the expression of GDP- or GTP-locked ARF6 mutants also suppresses the uptake of zymosan. These data suggest that the activation-inactivation cycles of Rab35 and ARF6 are required for the uptake of zymosan and that ACAP2 is an important component that links Rab35/ARF6 signaling during phagocytosis of zymosan.