In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and −15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.
NUFIP1 is an RNA-binding protein that interacts with fragile X mental retardation protein (FMRP) in the messenger ribonucleoprotein particle (mRNP). We previously showed that NUFIP1 was upregulated in colorectal cancer (CRC), but how the protein may contribute to the disease and patient prognosis is unknown. Here we combine database analysis, microarray, quantitative PCR, and immunohistochemistry of patients’ samples to confirm our previous findings on NUFIP1 overexpression in CRC, and to reveal that increased expression of NUFIP1 in CRC tissues correlated with worse overall, recurrence-free, event-free and disease-free survival in patients, as well as with more advanced CRC clinicopathological stage. Loss of function analysis demonstrated that NUFIP1 knockdown suppressed cell growth in vitro and in vivo , inhibited cell viability and survival, and induced cell cycle arrest and apoptosis in vitro , as well as up-regulated Bax and down-regulated Bcl-2 protein expression. In addition, as a natural anticancer triterpene from various fruits and vegetables, ursolic acid (UA) treatment suppressed cell proliferation, down-regulated NUFIP1 protein expression, and further enhanced the effects of NUFIP1 knockdown in CRC cells in vitro . NUFIP1 knockdown up-regulated the expression of 136 proteins, down-regulated the expression of 41 proteins, and enriched multiple signaling pathways including the senescence-associated heterochromatin foci (SAHF) pathway. Furthermore, NUFIP1 knockdown enhanced the expression of senescence-associated-β-galactosidase (SA-β-gal), the SAHF markers HP1γ and trimethylation (H3k9me3), and the senescence-related protein HMGA2, as well as both p53 and its downstream p21 protein expression. Our findings suggest that NUFIP1 is overexpressed in CRC and correlates with disease progression and poor patient survival. NUFIP1 may exert oncogenic effects partly by altering senescence. UA may show potential to treat CRC by down-regulating NUFIP1.
Low physical activity correlates with increased cancer risk in various cancer types, including colorectal cancer (CRC). However, the ways in which swimming can benefit CRC remain largely unknown. In this study, mice bearing tumors derived from CT-26 cells were randomly divided into the control and swimming groups. Mice in the swimming group were subjected to physical training (swimming) for 3 weeks. Compared with the control group, swimming clearly attenuated tumor volume and tumor weight in CT-26 tumor-bearing mice. RNA sequencing (RNA-seq) identified 715 upregulated and 629 downregulated transcripts (including VEGFA) in tumor tissues of mice in the swimming group. KEGG pathway analysis based on differentially expressed transcripts identified multiple enriched signaling pathways, including angiogenesis, hypoxia, and vascular endothelial growth factor (VEGF) pathways. Consistently, IHC analysis revealed that swimming significantly downregulated CD31, HIF-1α, VEGFA, and VEGFR2 protein expression in tumor tissues. In conclusion, swimming significantly attenuates tumor growth in CT-26 tumor-bearing mice by inhibiting tumor angiogenesis via the suppression of the HIF-1α/VEGFA pathway.
Objective: As a well-known traditional Chinese medicine formula prescribed by academician Ke-ji Chen, Qingda granule (QDG) lowered the blood pressure of spontaneously hypertensive rats and attenuated hypertensive cardiac remodeling and inflammation. However, its functional role and underlying mechanisms on hypertensive vascular function remain largely unclear. This study aims to assess the effects of QDG treatment on Angiotensin II- (AngII-) induced hypertension and vascular function and explore its underlying mechanisms both in vitro and in vivo . Methods: In an in vivo study, 25 male C57BL/6 mice were randomly divided into five groups, including Control, AngII, AngII + QDG-L, AngII + QDG-M, and AngII + QDG-H groups ( n = 5 for each group). Mice in AngII and AngII + QDG-L/-M/-H groups were infused with AngII (500 ng/kg/min), while in the Control group, they were infused with saline. Mice in AngII + QDG were intragastrically given different concentrations of QDG (0.5725, 1.145, or 2.29 g/kg/day), while in Control and AngII groups, they were intragastrically given equal volumes of double distilled water for 2 weeks. Blood pressure was determined at 0, 1, and 2 weeks of treatment. Ultrasound was used to detect the pulse wave velocity (PWV) and HE staining to detect the pathological change of the abdominal aorta. RNA sequencing (RNA-seq) was performed to identify the differentially expressed transcripts (DETs) and related signaling pathways. IHC was used to detect the expression of p-ERK in the abdominal aorta. Primary isolated rat vascular smooth muscle cells (VSMCs) were used to assess the cellular Ca 2+ release and activation of the ERK pathway by confocal microscope and western blotting analysis, respectively. Results: QDG treatment significantly alleviated the elevated blood pressure, the PWV, and the thickness of the abdominal aorta in AngII-induced hypertensive mice. RNA-seq and KEGG analyses identified 1,505 DETs and multiple enriched pathways (including vascular contraction and calcium signaling pathway) after QDG treatment. Furthermore, confocal microscope showed that QDG treatment partially attenuated the increase of Ca 2+ release with the stimulation of AngII in cultured VSMCs. In addition, IHC and western blotting indicated that QDG treatment also partially alleviated the increase of phospho-ERK levels in abdominal aorta tissues of mice and cultured VSMCs after the infusion or stimulation of AngII. Conclusion: QDG treatment attenuated the elevation of blood pressure, abdominal aorta dysfunction, pathological changes, Ca 2+ release, and activation of the ERK signaling pathway.
Clinical studies have shown that the efficacy of programmed cell death receptor-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors on glioblastoma (GBM) is much lower than what is expected because of the low immunogenicity of GBM. Ferroptosis of cancer cells can induce the maturation of dendritic cells (DC cells) and increase the activity of T cell. The activated T cells release IFN-γ, which subsequently induces the ferroptosis of cancer cells. Thus, the aim of this paper is to set up a new GBM-targeted drug delivery system (Fe3O4-siPD-L1@M-BV2) to boost ferroptosis for immunotherapy of drug-resistant GBM.Fe3O4-siPD-L1@M-BV2 significantly increased the accumulation of siPD-L1 and Fe2+ in orthotopic drug-resistant GBM tissue in mice. Fe3O4-siPD-L1@M-BV2 markedly decreased the protein expression of PD-L1 and increased the ratio between effector T cells and regulatory T cells in orthotopic drug-resistant GBM tissue. Moreover, Fe3O4-siPD-L1@M-BV2 induced ferroptosis of GBM cells and maturation of DC cell, and it also increased the ratio between M1-type microglia and M2-type microglia in orthotopic drug-resistant GBM tissue. Finally, the growth of orthotopic drug-resistant GBM in mice was significantly inhibited by Fe3O4-siPD-L1@M-BV2.The mutual cascade amplification effect between ferroptosis and immune reactivation induced by Fe3O4-siPD-L1@M-BV2 significantly inhibited the growth of orthotopic drug-resistant GBM and prolonged the survival time of orthotopic drug-resistant GBM mice.
Cardiac fibrosis plays an important role in hypertension-related contractile dysfunction and heart failure. Qingda granule (QDG), derived from the Qingxuan Jiangya decoction, has been used clinically for more than 60 years to treat hypertension. However, the effect of QDG on hypertensive cardiac fibrosis remains largely unknown. The objective of this study was to investigate the effect of QDG on cardiac fibrosis and explore the underlying mechanism in vivo and in vitro. For in vivo experiments, 30 male spontaneously hypertensive rats were randomly divided into groups that received no QDG or one of three doses (0.45, 0.9 or 1.8 g/kg/day). Positive-control animals received valsartan (VAL, 7.2 mg/kg/day). Treatments were administered by gavage for 10 weeks. All three doses of QDG and VAL led to significantly lower blood pressure than in SHR animals. Besides, all three doses of QDG and VAL attenuated pathological changes in SHR animals. However, only intermediate, high concentrations of QDG and VAL led to significantly lower left ventricle ejection fraction and left ventricle fractional shortening than in SHR animals. Therefore, the minimum and effective QDG dose (intermediate concentration of QDG) was selected for subsequent animal experiments in this study. Our results showed that intermediate concentration of QDG also significantly mitigated the increases in levels of α-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), collagen III, transforming growth factor-β1 (TGF-β1) and in the ratio of phospho-Smad2/3 to total Smad2/3 protein in cardiac tissue, based on immunohistochemistry, Western blotting, and Masson staining. For in vitro experiments, primary cardiac fibroblasts were stimulated with 100 nM angiotensin II in the presence or absence of QDG. And we tested different concentrations of QDG (3.125, 6.25, 12.5, 25, 50 μg/mL) in the cell viability experiment. Our results showed that 3.125, 6.25 and 12.5 μg/mL of QDG treatment for 24 h didn't affect the cell viability of cardiac fibroblasts. Consistently, QDG at 6.25 or 12.5 μg/mL significantly reduced cell viability and down-regulated α-SMA in primary cardiac fibroblasts were stimulated with 100 nM angiotensin II. Therefore, QDG at 12.5 μg/mL was chosen for the following cell experiment. Our results showed that QDG at 12.5 μg/mL alleviated the increase of PCNA, collagen Ⅲ, TGF-β1 expression, and the ratio of phospho-Smad2/3 to total Smad2/3 protein. Our studies in vitro and in vivo suggest that QDG reduces blood pressure and cardiac fibrosis as well as protecting cardiac function, and that it exerts these effects in part by suppressing TGF-β1/Smad2/3 signaling.
Abstract Dendritic cells (DCs) play important roles in the initiation and maintenance of the immune response. The dysfunction of DCs contributes to tumor evasion and growth. Here we report our findings on the dysfunction of DCs in radiation-induced thymic lymphomas and the up-regulation of the expression of the lipoprotein lipase (LPL) and the fatty acid binding protein (FABP4) and the level of triacylglycerol (TAG) in serum after total body irradiation, which contribute to DCs lipid accumulation. DCs with high lipid content showed low expression of co-stimulatory molecules and DCs-related cytokines and were not able to effectively stimulate allogeneic T cells. Normalization of lipid abundance in DCs with an inhibitor of acetyl-CoA carboxylase restored the function of DCs. A high-fat diet promoted radiation-induced thymic lymphoma growth. In all, our study shows that dysfunction of DCs in radiation-induced thymic lymphomas was due to lipid accumulation and may represent a new mechanism in radiation-induced carcinogenesis.