Esophageal squamous cell carcinoma (ESCC) is characterized by high prevalence and mortality worldwide, and it is very highly prevalent in China. ESCC is caused by various factors, including microRNAs (miRNAs) whose expression have been shown to play a major role in tumor generation. Single nucleotide polymorphisms (SNPs) in miRNAs could affect susceptibility to numerous cancers. This study aimed to evaluate the relationship between SNPs in miR-124 and ESCC risk in the Chinese Kazakh population.A total of 239 Chinese Kazakh patients with ESCC and 227 healthy Chinese Kazakh individuals were recruited in this study. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to analyze the miR-124 rs531564 genotype.Allele G of the miR-124 rs531564 polymorphism significantly reduced the risk of ESCC in the Chinese Kazakh population [odds ratio (OR) = 0.711; 95% confidence interval (CI): 0.508-0.996; p = 0.047]. The dominant model indicated that the CG+GG genotypes were associated with significantly decreased ESCC risk compared to the CC genotype (adjusted OR = 0.586; 95% CI: 0.396-0.867; p = 0.007). Stratification analyses showed that compared with the CC genotype, the CG and CG+GG genotypes manifested reduced ESCC risks in the female group [CG vs. CC: OR = 0.472; 95% CI: 0.255-0.872; p = 0.016; (CG+GG) vs. CC: OR = 0.472; 95% CI: 0.255-0.872; p = 0.016] and the age group of <57 years old [CG vs. CC: OR = 0.456; 95% CI: 0.258-0.806; p = 0.006; (CG+GG) vs. CC: OR = 0.456; 95%CI: 0.258-0.806; p = 0.006]. The miR-124 rs531564 polymorphism showed no significant association with histological stage, lymph node metastasis, depth of invasion, or tumor/node/metastasis stage.Our findings are the first to be reported that the miR-124 rs531564 polymorphism decreased ESCC risk in the Chinese Kazakh population.
Abstract Background The possible regulatory mechanism of MIR31HG in human cancers remains unclear, and reported results of the prognostic significance of MIR31HG expression are inconsistent. Methods The meta‐analysis and related bioinformatics analysis were conducted to evaluate the role of MIR31HG in tumor progression. Results The result showed that high MIR31HG expression was not related to prognosis. However, in the stratified analysis, we found that the overexpression of MIR31HG resulted in worse OS, advanced TNM stage, and tumor differentiation in respiratory system cancers. Moreover, our results also found that MIR31HG overexpression was related to shorter OS in cervical cancer patients and head and neck tumors. In contrast, the MIR31HG was lower in digestive system tumors which contributed to shorter overall survival, advanced TNM stage, and distant metastasis. Furthermore, the bioinformatics analysis showed that MIR31HG was highly expressed in normal urinary bladder, small intestine, esophagus, stomach, and duodenum and low in colon, lung, and ovary. The results obtained from FireBrowse indicated that MIR31HG was highly expressed in LUSC, CESC, HNSC, and LUAD and low in STAD and BLCA. Gene Ontology analysis showed that the co‐expressed genes of MIR31HG were most enriched in the biological processes of peptide metabolism and KEGG pathways were most enriched in Ras, Rap1, and PI3K‐Akt signaling pathway. Conclusion MIR31HG may serve as a potential biomarker in human cancers.
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Although associations between ARMS tumorigenesis and PAX3, PAX7, and FKHR are well recognized, the complete genetic etiology underlying RMS pathogenesis and progression remains unclear. Chromosomal copy number variations (CNVs) and the involved genes may play important roles in the pathogenesis and progression of human malignancies. Using high-resolution array comparative genomic hybridization (aCGH), we examined 20 formalin-fixed, paraffin-embedded (FFPE) RMS tumors to explore the involvement of the relevant chromosomal regions with resident genes in RMS tumorigenesis. In RMS, frequent gains were identified on chromosome regions 12q13.3-q14.1, 12q24.31, 17q25.1, 1q21.1, and 7q11.23, whereas frequent losses were observed on chromosome regions 5q13.2, 14q32.33, and 15q11.2. Amplifications were observed on chromosome regions 9p13.3, 12q13.3-q14.1, 12q15, and 16p13.11, whereas deletions were detected on chromosome regions 1p36.33, 1p13.1, 2q11.1, 5q13.2, 8p23.1, 9p24.3, and 16p11.2. Frequent gains were detected in GLI1, GEFT, OS9, and CDK4 (12q13.3-q14.1), being 60% in embryonal rhabdomyosarcoma (ERMS) and 66.67% in alveolar rhabdomyosarcoma (ARMS), respectively. However, frequent losses were detected in IGHG1, IGHM, IGHG3, and IGHG4 (14q32.33), being 70% in ERMS and 55.56% in and ARMS, respectively. Frequent gains were detected in TYROBP, HCST, LRFN3, and ALKBH6 (19q13.12) in ERMS but not in ARMS. The frequency of TYROBP, HCST, LRFN3, and ALKBH6 gains is significantly different in ERMS versus ARMS (P=0.011). The results suggest that novel TYROBP, HCST, LRFN3, and ALKBH6 genes may play important roles in ERMS. The technique used is a feasible approach for array comparative genomic hybridization analysis in archival tumor samples.
Abstract Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignant diseases. Multiple studies with large clinic-based cohorts have revealed that variations of phospholipase C epsilon 1 (PLCE1) correlate with esophageal cancer susceptibility. However, the causative role of PLCE1 in ESCC has remained elusive. Here, we observed that hypomethylation-mediated upregulation of PLCE1 expression was implicated in esophageal carcinogenesis and poor prognosis in ESCC cohorts. PLCE1 inhibited cell autophagy and suppressed the protein expression of p53 and various p53-targeted genes in ESCC. Moreover, PLCE1 decreased the half-life of p53 and promoted p53 ubiquitination, whereas it increased the half-life of mouse double minute 2 homolog (MDM2) and inhibited its ubiquitination, leading to MDM2 stabilization. Mechanistically, the function of PLCE1 correlated with its direct binding to both p53 and MDM2, which promoted MDM2-dependent ubiquitination of p53 and subsequent degradation in vitro. Consequently, knockdown of PLCE1 combined with transfection of a recombinant adenoviral vector encoding wild-type p53 resulted in significantly increased levels of autophagy and apoptosis of esophageal cancer in vivo. Clinically, the upregulation of PLCE1 and mutant p53 protein predicted poor overall survival of patients with ESCC, and PLCE1 was positively correlated with p53 in ESCC cohorts. Collectively, this work identified an essential role for PLCE1- and MDM2-mediated ubiquitination and degradation of p53 in inhibiting ESCC autophagy and indicates that targeting the PLCE1–MDM2–p53 axis may provide a novel therapeutic approach for ESCC. Significance: These findings identify hypomethylation-mediated activation of PLCE1 as a potential oncogene that blocks cellular autophagy of esophageal carcinoma by facilitating the MDM2-dependent ubiquitination of p53 and subsequent degradation.
Solitary fibrous tumors (SFT) are fibroblastic, ubiquitous mesenchymal tumors. Although several SFT studies have been conducted, the cell of origin of SFT remains controversial and reliable diagnostic markers are needed for SFT identification for proper prognosis and therapeutics. To analyze the immunophenotype of SFT for the identification of specific diagnostic markers and the cell of origin of this tumor, we performed an immunohistochemical study of stem cell markers [aldehyde dehydrogenase 1 (ALDH1), CD29, CD44, CD133, and nestin] and signal transducer and activator of transcription 6 (STAT6) in 18 cases of SFT. The results demonstrated that ALDH1 was present in 16 cases (16/18), STAT6 in 13 cases (13/18), CD44 in 8 cases (8/18), and CD29 in 1 case (1/18), whereas CD133 and nestin were absent in all cases (0/18). Our results indicate that combination with ALDH1 and STAT6 can improve the diagnostic value of CD34 for SFT. The immunohistochemical findings for stem cell surface markers indicate that SFT may originate from stem cells and that ALDH1 plays an important role in the development of SFT.
Objective To explore the impact of M2 macrophages on the malignant biological behavior of esophageal cancer by inhibiting the anti-tumor ability of CD8
There is increasing evidence that matrix metalloproteinase 14 (MMP-14) is involved in tumor progression and prognosis. MMP-14 exhibits different expression in patients with various cancers, suggesting that it may be considered as a potential prognostic biomarker for cancer.Therefore, this meta-analysis was performed to elucidate the prognostic value and association of MMP-14 over-expression in several types of cancers. Eligible studies based on eligibility criteria from various online databases were searched. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) were analyzed to determine the prognostic value of MMP-14 using STATA software 12.0.We identified sixteen applicable studies in this meta-analysis comprising 2,766 samples. Over-expression MMP-14 was significantly correlated with a poor overall survival (OS) outcome in multiple cancers (HR: 2.22; 95% CI: 1.72 - 2.87). Moreover, high levels of MMP-14 were markedly associated with tumor progression and metastasis (HR: 1.83; 95% CI: 1.36 - 2.46). MMP-14 expression was also associated with histological differentiation (OR: 0.37; 95% CI: 0.18 - 0.77).MMP-14 over-expression suggested aggressive biological behaviors and implied that MMP-14 may be a useful prognostic biomarker in human cancers.
As a major complication after percutaneous coronary intervention (PCI) in patients who suffer from coronary artery disease, in-stent restenosis (ISR) poses a significant challenge for clinical management. A miRNA-mRNA regulatory network of ISR can be constructed to better reveal the occurrence of ISR. The relevant data set from the Gene Expression Omnibus (GEO) database was downloaded, and 284 differentially expressed miRNAs (DE-miRNAs) and 849 differentially expressed mRNAs (DE-mRNAs) were identified. As predicted by online tools, 65 final functional genes (FmRNAs) were overlapping DE-mRNAs and DE-miRNAs target genes. In the biological process (BP) terms of gene ontology (GO) functional analysis, the FmRNAs were mainly enriched in the cellular response to peptide, epithelial cell proliferation, and response to peptide hormone. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the FmRNAs were mainly enriched in breast cancer, endocrine resistance, and Cushing syndrome. Jun proto-oncogene, activator protein-1 (AP-1) transcription factor subunit (JUN), insulin-like growth factor 1 receptor (IGF1R), member RAS oncogene family (RAB14), specificity protein 1 (SP1), protein tyrosine phosphatase nonreceptor type 1 (PTPN1), DDB1 and CUL4 associated factor 10 (DCAF10), retinoblastoma-binding protein 5 (RBBP5), and eukaryotic initiation factor 4A-I (EIF4A1) were hub genes in the protein-protein interaction network (PPI network). The miRNA-mRNA network containing DE-miRNAs and hub genes was built. Hsa-miR-139-5p-JUN, hsa-miR-324-5p-SP1 axis pairs were found in the miRNA-mRNA network, which could promote ISR development. The aforementioned results indicate that the miRNA-mRNA network constructed in ISR has a regulatory role in the development of ISR and may provide new approaches for clinical treatment and experimental development.