An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Abstract An effective mussel‐inspired multidentate block copolymer strategy having pendant anchoring catechol groups (Cat‐MDBC) to stabilize extremely small iron oxide nanoparticles (ESNPs) in water is reported. The resultant aqueous Cat‐MDBC/ESNP colloids with diameter ≈16 nm and core diameter ≈2 nm were non‐toxic to cells up to 200 μg/mL and exhibit excellent colloidal stability in physiological condition (pH=7) as well as in the presence of IgG model protein. More promisingly, they had the relaxivity ratio to be r 2 /r 1 =1.5, which is significantly lower than PEG‐coated SNPs with core diameter=1.5‐6 nm; further which is similar to those of Gd‐DOTA T 1 ‐weighted contrast agents. These results suggest that aqueous Cat‐MDBC/ESNP colloids could be a promising candidate for T 1 ‐weighted MRI contrast enhancement.
With good contrast in T 1 and T 2 weighted imaging as well as low toxicity in 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, this work proposes the cross-linked polydimethylsiloxane colloids as a novel non-ionic contrast agent for gastrointestinal magnetic resonance imaging. The experiments of nuclear magnetic resonance spectra and relaxation show that within the interface of the colloids, there are nuclear Overhauser effect and transient nuclear Overhauser effect (cross-relaxation). Regarding the longitudinal relaxation experiments of CH 2 CH 2 O segments of Tween 80, a two spins system is found and modeled well by the equation [Formula: see text] which is deduced based on the transient nuclear Overhauser effect proposed by Solomon. The arbitrary constant X is additionally added with the initial conditions ( I z − I 0 ) t =0 = −2 XS 0 and ( S z − S 0 ) t =0 = −2 S 0 . For the two spins system, D 1 and T 1 are corresponding to longitudinal relaxation times of the bound water and the CH 2 CH 2 O respectively. Concerning the transverse relaxation experiments of the CH 2 CH 2 O, they agree with the equation with three exponential decays, defined by three relaxation times, likely corresponding to three mechanisms. These mechanisms possibly are intramolecular and intermolecular dipole–dipole (DD) interactions and scalar coupling. Within the interface, hydrogen bonding causes the positive nuclear Overhauser effect of the CH 2 CH 2 O’s nuclear magnetic resonance spectra, the transient nuclear Overhauser effect of the CH 2 CH 2 O’s longitudinal relaxation experiments and the intermolecular dipole–dipole interactions of the CH 2 CH 2 O’s transverse relaxation experiments.
A new strategy for facile preparation of highly luminescent CdTe quantum dots (QDs) within amine-terminated hyperbranched poly(amidoamine)s (HPAMAM) was proposed in this paper. CdTe precursors were first prepared by adding NaHTe to aqueous Cd2+ chelated by 3-mercaptopropionic sodium (MPA-Na), and then HPAMAM was introduced to stabilize the CdTe precursors. After microwave irradiation, highly fluorescent and stable CdTe QDs stabilized by MPA-Na and HPAMAM were obtained. The CdTe QDs showed a high quantum yield (QY) up to 58%. By preparing CdTe QDs within HPAMAM, the biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs can be combined, endowing the CdTe QDs with biocompatibility. The resulting CdTe QDs can be directly used in biomedical fields, and their potential application in bio-imaging was investigated.
Abstract A microwave assisted polyol process accomplished within 10 min was developed for synthesis of superparamagnetic Fe 3 O 4 nanoparticles (MNPs) with well controlled size between 2 and 6 nm. Effects of reaction time and temperature on the size of the MNPs were investigated through transmission electronic microscope, x-ray diffraction pattern, thermogravimetic and magnetic analysis. The results indicates that longer reaction time or higher temperature lead to formation of MNPs with larger size. As a proof-of-concept, the MNPs were utilized as peroxidase and their activity was also investigated. Oxidation of typical substrate, 3, 3’, 5, 5’ -tetramethylbenzidine, can be proceeded by using the MNPs as artificial mimic enzyme. The MNPs display the maximal catalyzed activity under the optimum condition as pH = 3.5, 40 °C and concentration of TMB and H 2 O 2 with 120 and 110 mmol·l −1 , respectively. This work provides a new way for fast synthesis of MNPs, which are of potential application in artificial mimic enzyme.
A novel method for RAFT copolymerization of styrene (St) and maleic anhydride (MAh) at ambient temperature using ascorbic acid (Asc) as an initiator is reported. Various experimental conditions including reaction component, monomer composition, the amount of Asc, and temperature were investigated in terms of monomer conversion, molecular weight, and molecular weight distribution. In this system, the copolymer of styrene/maleic anhydride (SMA) with well-regulated molecular weight and low molecular weight distribution (Mw/Mn=1.30) was obtained, and the conversion of monomer was 70.4% after 12 hours at 25°C. The NMR spectra demonstrated that the copolymer synthesized possesses a strictly alternating structure. Furthermore, the proposed mechanism adapted to the RAFT copolymerization of St and MAh initiated by Asc at ambient temperature is presented. Using this new methodology, it is possible to achieve well-defined SMA under mild conditions by RAFT copolymerization.
Flexible electronic devices and conductive materials can be used as wearable sensors to detect human motions. However, the existing hydrogels generally have problems of weak tensile capacity, insufficient durability, and being easy to freeze at low temperatures, which greatly affect their application in the field of wearable devices. In this paper, glycerol was partially replaced by water as the solvent, agar was thermally dissolved to initiate acrylamide polymerization, and MXene was used as a conductive filler and initiator promoter to form the double network MXene-PAM/Agar organic hydrogel. The presence of MXene makes the hydrogel produce more conductive paths and enforces the hydrogel's higher conductivity (1.02 S·m-1). The mechanical properties of hydrogels were enhanced by the double network structure, and the hydrogel had high stretchability (1300%). In addition, the hydrogel-based wearable strain sensor exhibited good sensitivity over a wide strain range (GF = 2.99, 0-200% strain). The strain sensor based on MXene-PAM/Agar hydrogel was capable of real-time monitoring of human movement signals such as fingers, wrists, arms, etc. and could maintain good working conditions even in cold environments (-26 °C). Hence, we are of the opinion that delving into this hydrogel holds the potential to broaden the scope of utilizing conductive hydrogels as flexible and wearable strain sensors, especially in chilly environments.
Abstract Magnetic nanomaterials have unique advantages in heavy metal ions absorption because of their large specific surface area and easy magnetic manipulation. Carbon nanotube or graphene loaded with magnetite nanoparticles (MNPs) have been utilized to fabricate absorbents with both high absorption capacity and fast magnetic capture. Herein, cheap commercial carbon black was used as a substitute for expensive carbon nanotube or graphene to fabricate nanocomposites (CB-MNP) by modified carbon black loaded with superparamagnetic MNPs. The fabrication process is accomplished by two steps. Carbon blacks (CB) were modified by nitric acid to produce a large number of carboxyl groups on the surface and make stable aqueous dispersion. Subsequently, CB-MNPs with high water stability and fast magnetic response were facilely prepared by iron precursors (the ratio of ferrous to ferric is 1:2) added into the above CB dispersion and tuned pH = 10, finally added polyacrylic acid solution under sonication. Modified CB and CB-MNPs were characterized by transmission electron microscope (TEM), dynamic laser scattering (DLS), thermogravimetric analysis and so on. Water stability and magnetic response can be controlled by changing the proportion of CB and iron precursor. As a proof-of-concept, CB-MNPs were used for absorption removal of cadmium ions. Excellent performance was demonstrated with the removal efficiency of 71.41% and removal capacity of 39.99 mg · g −1 at the initial concentration of Cd 2+ as 5 × 10 −5 mol · l −1 . The effects of initial concentration of Cd 2+ , pH value and interfering anion ions were also investigated and the results indicate the potential application of CB-MNP in fast removal of heavy metal ions.