COH29 [N-(4-(3,4-dihydroxyphenyl)-5-phenylthiazol-2-yl)-3,4-dihydroxybenzamide], a novel antimetabolite drug developed at City of Hope Cancer Center, has anticancer activity that stems primarily from the inhibition of human ribonucleotide reductase (RNR). This key enzyme in deoxyribonucleotide biosynthesis is the target of established clinical agents such as hydroxyurea and gemcitabine because of its critical role in DNA replication and repair. Herein we report that BRCA-1–defective human breast cancer cells are more sensitive than wild-type BRCA-1 counterparts to COH29 in vitro and in vivo. Microarray gene expression profiling showed that COH29 reduces the expression of DNA repair pathway genes, suggesting that COH29 interferes with these pathways. It is well established that BRCA1 plays a role in DNA damage repair, especially homologous recombination (HR) repair, to maintain genome integrity. In BRCA1-defective HCC1937 breast cancer cells, COH29 induced more double-strand breaks (DSBs) and DNA-damage response than in HCC1937 + BRCA1 cells. By EJ5– and DR–green fluorescent protein (GFP) reporter assay, we found that COH29 could inhibit nonhomologous end joining (NHEJ) efficiency and that no HR activity was detected in HCC1937 cells, suggesting that repression of the NHEJ repair pathway may be involved in COH29-induced DSBs in BRCA1-deficient HCC1937 cells. Furthermore, we observed an accumulation of nuclear Rad51 foci in COH29-treated HCC1937 + BRCA1 cells, suggesting that BRCA1 plays a crucial role in repairing and recovering drug-induced DNA damage by recruiting Rad51 to damage sites. In summary, we describe here additional biologic effects of the RNR inhibitor COH29 that potentially strengthen its use as an anticancer agent.
The retinoblastoma (RB) susceptibility gene encodes a protein whose function prevents neoplastic transformation in a variety of cell types (for review, see Lee et al. 1988, 1990; Goodrich and Lee 1990). Loss or mutation of the gene elicits tumorigenesis in susceptible cells, and the reintroduction of the wild-type gene effects a reversion to a nontumorigenic state. Because the RB gene is expressed in all mammalian cell types examined so far, and because loss of a functional RB gene is associated with several cancers, the RB protein probably plays a general role in the regulation of cell growth.
A major advance was made to reduce the side effects of cancer therapy via the elucidation of the tumor-specific lytic path progression-mediated targeting retinoblastoma (Rb) or p53-mutants defective in G1 DNA damage checkpoint. The genetic basis of human cancers was uncovered through the cloning of the tumor suppressor gene. It encodes a nuclear DNA-binding protein whose self-interaction is regulated by cyclin-dependent kinases. A 3D-structure of dimer is shown, confirming its multimeric status. assumes a central role in cell cycle regulation and the Rb pathway is universally inactivated in human cancers. Hyperploidy refers to a state in which cells contain one or more extra chromosomes. Hyperploid progression occurs due to continued cell-cycling without cytokinesis in G1 checkpoint-defective cancer cells. The evidence for the triggering of hyperploid progression-mediated death in RB-mutant human retinoblastoma cells is shown. Hence, the very genetic mutation that predisposes to cancer can be exploited to induce lethality. The discovery helped to establish the principle of targeted cytotoxic cancer therapy at the mechanistic level. By triggering the lytic path, targeted therapy with tumor specificity at the genetic level can be developed. It sets the stage for systematically eliminating side effects for cytotoxic cancer therapy.
In this report, we describe a novel lytic mechanism exploited by antimicrotubule drugs (AMDs) such as Taxol which are frequently used to treat multiple human cancers including breast and ovarian cancers. In cells lacking the G1-arresting capacity due to the defect in retinoblastoma or p53 gene function, AMDs trigger hyperploid progression and death. The hyperploid progression occurs via continued cell-cycle progression without cell division. Blocking hyperploid progression through hydroxyurea or ectopically expressed p27Kip1, a G1-specific Cdk inhibitor, abrogates AMD cytotoxicity. Thus, AMDs induce lethality in G1-checkpoint-defective cells by triggering hyperploid progression. The phenomenon is reminiscent of that observed previously with bub-1 yeast mutant. The potential significance of this finding lies in that hyperploid progression-mediated death may be exploited to develop a therapy with tumor-specificity at the genetic level. As a large fraction of human cancers are mutated in p53 gene, it may have a wide therapeutic applicability.
Less than 0.5% of intravenously injected drugs reach tumors, contributing to side effects. To limit damage to healthy cells, various delivery vectors have been formulated; yet, previously developed vectors suffer from poor penetration into solid tumors. This issue was resolved by the discovery of HN-1 peptide isolated via biopanning a phage-display library. HN-1 targets human head and neck squamous cell carcinoma (HNSCC) (breast, thyroid; potentially lung, cervix, uterine, colon cancer), translocates across the cell membrane, and efficiently infiltrates solid tumors. HN-1 peptide has been conjugated to various anticancer drugs and imaging agents though the identity of its receptor remained enigmatic.To decipher the clues that pointed to retinoblastoma (Rb)-regulated discoidin-domain receptor 1 as the putative receptor for HN-1 is described.HN-1 peptide was synthesized and purified using reverse-phase high-performance liquid chromatography and gel electrophoresis. The predicted mass was confirmed by mass spectroscopy. To image the 3-dimensional structure of HN-1 peptide, PyMOL was used. Molecular modeling was also performed with PEP-FOLD3 software via RPBS bioinformatics web portal (INSERM, France). The immunohistochemistry results of discoidin domain receptor 1 (DDR1) protein were obtained from the publicly accessible database in the Human Protein Atlas portal, which contained the images of immunohistochemically labeled human cancers and the corresponding normal tissues.The clues that led to DDR1 involved in metastasis as the putative receptor mediating HN-1 endocytosis are the following: (1) HN-1 is internalized in phosphate-buffered saline and its uptake is competitively inhibited; (2) HN-1 (TSPLNIHNGQKL) exhibits similarity with a stretch of amino acids in alpha5 beta3 integrin (KLLITIHDRKEF). Aside from two identical residues (Ile-His) in the middle, the overall distribution of polar and nonpolar residues throughout the sequences is nearly identical. As HN-1 sequence lacks the Arg-Gly-Asp motif recognized by integrins, HN-1 may interact with an "integrin-like" molecule. The tertiary structure of both peptides showed similarity at the 3-dimensional level; (3) HN-1 is internalized by attached cells but not by suspended cells. As culture plates are typically coated with collagen, collagen-binding receptor (expressed by adherent but not suspended cells) may represent the receptor for HN-1; (4) DDR1 is highly expressed in head and neck cancer (or breast cancer) targeted by HN-1; (5) Upon activation by collagen, DDR1 becomes internalized and compartmentalized in endosomes consistent with the determination of 'energy-dependent clathrin-mediated endocytosis' as the HN-1 entry route and the identification of HN-1 entrapped vesicles as endosomes; and (6) DDR1 is essential for the development of mammary glands consistent with the common embryonic lineage rationale used to identify breast cancer as an additional target of HN-1. In summary, collagen-activated tyrosine kinase receptor DDR1 overexpressed in HNSCC assumes a critical role in metastasis. Further studies are warranted to assess HN-1 peptide's interaction with DDR1 and the therapeutic potential of treating metastatic cancer. Additionally, advances in delivery (conformation, endocytic mechanism, repertoire of targeted cancers of HN-1 peptide), tracking (HN-1 conjugated imaging agents), and activity (HN-1 conjugated therapeutic agents) are described.The discovery of DDR1 as HN-1 peptide's putative receptor represents a significant advance as it enables identification of metastatic cancers or clinical application of previously developed therapeutics to block metastasis.
Complete inactivation of the human retinoblastoma gene (RB) is believed to be an essential step in tumorigenesis of several different cancers. To provide a framework for understanding inactivation mechanisms, the structure of RB was delineated. The RB transcript is encoded in 27 exons dispersed over about 200 kilobases (kb) of genomic DNA. The length of individual exons ranges from 31 to 1889 base pairs (bp). The largest intron spans greater than 60 kb and the smallest one has only 80 bp. Deletion of exons 13-17 is frequently observed in various types of tumors, including retinoblastoma, breast cancer, and osteosarcoma, and the presence of a potential "hot spot" for recombination in the region is predicted. A putative "leucine-zipper" motif is exclusively encoded by exon 20. The detailed RB structure presented here should prove useful in defining potential functional domains of its encoded protein. Transcription of RB is initiated at multiple positions and the sequences surrounding the initiation sites have a high G + C content. A typical upstream TATA box is not present. Localization of the RB promoter region was accomplished by utilizing a heterologous expression system containing a bacterial chloramphenicol acetyltransferase gene. Deletion analysis revealed that a region as small as 70 bp is sufficient for RB promoter activity, similar to other previously characterized G + C-rich gene promoters. Several direct repeats and possible stem-and-loop structures are found in the promoter region. No enhancer element was detected within the 7.3 kb of upstream sequence studied. Several features of the RB promoter are reminiscent of the characteristics associated with many "housekeeping" genes, consistent with its ubiquitous expression pattern.
Recent evidence indicates the existence of a genetic locus in chromosome region 13q14 that confers susceptibility to retinoblastoma, a cancer of the eye in children. A gene encoding a messenger RNA (mRNA) of 4.6 kilobases (kb), located in the proximity of esterase D, was identified as the retinoblastoma susceptibility (RB) gene on the basis of chromosomal location, homozygous deletion, and tumor-specific alterations in expression. Transcription of this gene was abnormal in six of six retinoblastomas examined: in two tumors, RB mRNA was not detectable, while four others expressed variable quantities of RB mRNA with decreased molecular size of about 4.0 kb. In contrast, full-length RB mRNA was present in human fetal retina and placenta, and in other tumors such as neuroblastoma and medulloblastoma. DNA from retinoblastoma cells had a homozygous gene deletion in one case and hemizygous deletion in another case, while the remainder were not grossly different from normal human control DNA. The gene contains at least 12 exons distributed in a region of over 100 kb. Sequence analysis of complementary DNA clones yielded a single long open reading frame that could encode a hypothetical protein of 816 amino acids. A computer-assisted search of a protein sequence database revealed no closely related proteins. Features of the predicted amino acid sequence include potential metal-binding domains similar to those found in nucleic acid-binding proteins. These results provide a framework for further study of recessive genetic mechanisms in human cancers.
Mutational inactivation of the retinoblastoma gene (RB) is found in all retinoblastomas and in a subset of other human neoplasms, including sarcomas of bone or soft tissue and carcinomas of lung or breast. Exogenous copies of wild-type RB have been shown to suppress the tumorigenicity of several types of tumor cells with endogenous RB mutations, including a previously described human prostatic carcinoma cell line. To further support a role for RB inactivation in the genesis of prostate cancer, seven primary or metastatic prostate carcinoma specimens were examined for evidence of RB mutation. By the use of immunoblot analysis and immunostaining of histologic sections, RB-encoded protein was readily detected in tumor cells of five specimens, was equivocally detected in one specimen, and was apparently absent from tumor cells of one specimen. RB mutations in the latter case were precisely characterized as (i) a deletion of 103 nucleotides containing transcriptional start sites and (ii) loss of the second RB allele. The 103-base-pair deletion was sufficient to abolish the promoter activity of upstream DNA sequences in a heterologous expression system. These results (i) demonstrate that RB can be inactivated in vivo by mutation of its promoter, (ii) confirm the existence of RB mutations in some human prostate carcinomas, and (iii) suggest the use of immunohistochemical methods to screen for RB mutations in clinical samples of common adult neoplasms.