Abstract This paper describes a CFD-DEM modeling of CO 2 capture using K 2 CO 3 solid sorbents in a bubbling fluidized bed, which takes into heat transfer, hydrodynamics, and chemical reactions. Shrinking core model is applied in reaction kinetics. Simulation and experiment results of bed pressure drop and CO 2 concentration in the reactor exit agree well. Instantaneous dynamics as well as time-averaged profiles indicate detailed characteristics of gas flow, particle motion, and chemical reaction processes. The simulation results show an obvious core-annular flow and strong back-mixing flow pattern. CO 2 concentration decreases gradually along the bed height, while regards on the lateral distribution CO 2 concentration near the wall is lower than that in the middle zone where gas passes through faster. The effect of bubbles on CO 2 reaction is two-sided: it can promote mixing which strengthens reaction, while it can be a short pass of gas which is not beneficial to reaction. The simulation is helpful for further understanding and optimal design of fluidized bed reactors of CO 2 capture.
Abstract CO 2 capture using solid sorbents in fluidized bed reactors is a promising technology. The multiphase CFD model is increasingly developed to study the reactors, but it is difficult to model all the realistic details and it requires significant computational time. In this study, both the multiphase CFD model (i.e., CFD-DEM model coupled with reaction) and the simplified reactor models (i.e., plug flow model and bubbling two-phase model) are developed for modeling a fluidized bed CO 2 capture reactor. The comparisons are made at different gas velocities from fixed bed to fluidized bed. The DEM based model reveals a detailed view of CO 2 adsorption process with particle flow dynamics, based on which the assumptions in the simplified models can be evaluated. The plug flow model predictions generally show similar trends to the DEM model but there are quantitative differences; thus, it can be used to determine the reactor performance limit. The bubbling two-phase model gives better predictions than the plug flow model because the effect of bubbles on the inter-phase mass transfer and reaction is included. In the future, a closer combination of the multiphase CFD simulation and the simplified reactor models will likely be an efficient design method of CO 2 capture fluidized bed reactors.